Search Results

Documents authored by Mc Inerney, Fionn


Document
Track A: Algorithms, Complexity and Games
Problems in NP Can Admit Double-Exponential Lower Bounds When Parameterized by Treewidth or Vertex Cover

Authors: Florent Foucaud, Esther Galby, Liana Khazaliya, Shaohua Li, Fionn Mc Inerney, Roohani Sharma, and Prafullkumar Tale

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Treewidth serves as an important parameter that, when bounded, yields tractability for a wide class of problems. For example, graph problems expressible in Monadic Second Order (MSO) logic and Quantified SAT or, more generally, Quantified CSP, are fixed-parameter tractable parameterized by the treewidth {of the input’s (primal) graph} plus the length of the MSO-formula [Courcelle, Information & Computation 1990] and the quantifier rank [Chen, ECAI 2004], respectively. The algorithms generated by these (meta-)results have running times whose dependence on treewidth is a tower of exponents. A conditional lower bound by Fichte, Hecher, and Pfandler [LICS 2020] shows that, for Quantified SAT, the height of this tower is equal to the number of quantifier alternations. These types of lower bounds, which show that at least double-exponential factors in the running time are necessary, exhibit the extraordinary level of computational hardness for such problems, and are rare in the current literature: there are only a handful of such lower bounds (for treewidth and vertex cover parameterizations) and all of them are for problems that are #NP-complete, Σ₂^p-complete, Π₂^p-complete, or complete for even higher levels of the polynomial hierarchy. Our results demonstrate, for the first time, that it is not necessary to go higher up in the polynomial hierarchy to achieve double-exponential lower bounds: we derive double-exponential lower bounds in the treewidth (tw) and the vertex cover number (vc), for natural, important, and well-studied NP-complete graph problems. Specifically, we design a technique to obtain such lower bounds and show its versatility by applying it to three different problems: Metric Dimension, Strong Metric Dimension, and Geodetic Set. We prove that these problems do not admit 2^{2^o(tw)}⋅n^𝒪(1)-time algorithms, even on bounded diameter graphs, unless the ETH fails (here, n is the number of vertices in the graph). In fact, for Strong Metric Dimension, the double-exponential lower bound holds even for the vertex cover number. We further complement all our lower bounds with matching (and sometimes non-trivial) upper bounds. For the conditional lower bounds, we design and use a novel, yet simple technique based on Sperner families of sets. We believe that the amenability of our technique will lead to obtaining such lower bounds for many other problems in NP.

Cite as

Florent Foucaud, Esther Galby, Liana Khazaliya, Shaohua Li, Fionn Mc Inerney, Roohani Sharma, and Prafullkumar Tale. Problems in NP Can Admit Double-Exponential Lower Bounds When Parameterized by Treewidth or Vertex Cover. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 66:1-66:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{foucaud_et_al:LIPIcs.ICALP.2024.66,
  author =	{Foucaud, Florent and Galby, Esther and Khazaliya, Liana and Li, Shaohua and Mc Inerney, Fionn and Sharma, Roohani and Tale, Prafullkumar},
  title =	{{Problems in NP Can Admit Double-Exponential Lower Bounds When Parameterized by Treewidth or Vertex Cover}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{66:1--66:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.66},
  URN =		{urn:nbn:de:0030-drops-202091},
  doi =		{10.4230/LIPIcs.ICALP.2024.66},
  annote =	{Keywords: Parameterized Complexity, ETH-based Lower Bounds, Double-Exponential Lower Bounds, Kernelization, Vertex Cover, Treewidth, Diameter, Metric Dimension, Strong Metric Dimension, Geodetic Sets}
}
Document
Sample Compression Schemes for Balls in Graphs

Authors: Jérémie Chalopin, Victor Chepoi, Fionn Mc Inerney, Sébastien Ratel, and Yann Vaxès

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
One of the open problems in machine learning is whether any set-family of VC-dimension d admits a sample compression scheme of size O(d). In this paper, we study this problem for balls in graphs. For balls of arbitrary radius r, we design proper sample compression schemes of size 4 for interval graphs, of size 6 for trees of cycles, and of size 22 for cube-free median graphs. We also design approximate sample compression schemes of size 2 for balls of δ-hyperbolic graphs.

Cite as

Jérémie Chalopin, Victor Chepoi, Fionn Mc Inerney, Sébastien Ratel, and Yann Vaxès. Sample Compression Schemes for Balls in Graphs. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 31:1-31:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chalopin_et_al:LIPIcs.MFCS.2022.31,
  author =	{Chalopin, J\'{e}r\'{e}mie and Chepoi, Victor and Mc Inerney, Fionn and Ratel, S\'{e}bastien and Vax\`{e}s, Yann},
  title =	{{Sample Compression Schemes for Balls in Graphs}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{31:1--31:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.31},
  URN =		{urn:nbn:de:0030-drops-168298},
  doi =		{10.4230/LIPIcs.MFCS.2022.31},
  annote =	{Keywords: Proper Sample Compression Schemes, Balls, Graphs, VC-dimension}
}
Document
Metric Dimension Parameterized by Feedback Vertex Set and Other Structural Parameters

Authors: Esther Galby, Liana Khazaliya, Fionn Mc Inerney, Roohani Sharma, and Prafullkumar Tale

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
For a graph G, a subset S ⊆ V(G) is called a resolving set if for any two vertices u,v ∈ V(G), there exists a vertex w ∈ S such that d(w,u) ≠ d(w,v). The Metric Dimension problem takes as input a graph G and a positive integer k, and asks whether there exists a resolving set of size at most k. This problem was introduced in the 1970s and is known to be NP-hard [GT 61 in Garey and Johnson’s book]. In the realm of parameterized complexity, Hartung and Nichterlein [CCC 2013] proved that the problem is W[2]-hard when parameterized by the natural parameter k. They also observed that it is FPT when parameterized by the vertex cover number and asked about its complexity under smaller parameters, in particular the feedback vertex set number. We answer this question by proving that Metric Dimension is W[1]-hard when parameterized by the feedback vertex set number. This also improves the result of Bonnet and Purohit [IPEC 2019] which states that the problem is W[1]-hard parameterized by the treewidth. Regarding the parameterization by the vertex cover number, we prove that Metric Dimension does not admit a polynomial kernel under this parameterization unless NP ⊆ coNP/poly. We observe that a similar result holds when the parameter is the distance to clique. On the positive side, we show that Metric Dimension is FPT when parameterized by either the distance to cluster or the distance to co-cluster, both of which are smaller parameters than the vertex cover number.

Cite as

Esther Galby, Liana Khazaliya, Fionn Mc Inerney, Roohani Sharma, and Prafullkumar Tale. Metric Dimension Parameterized by Feedback Vertex Set and Other Structural Parameters. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 51:1-51:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{galby_et_al:LIPIcs.MFCS.2022.51,
  author =	{Galby, Esther and Khazaliya, Liana and Mc Inerney, Fionn and Sharma, Roohani and Tale, Prafullkumar},
  title =	{{Metric Dimension Parameterized by Feedback Vertex Set and Other Structural Parameters}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{51:1--51:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.51},
  URN =		{urn:nbn:de:0030-drops-168496},
  doi =		{10.4230/LIPIcs.MFCS.2022.51},
  annote =	{Keywords: Metric Dimension, Parameterized Complexity, Feedback Vertex Set}
}
Document
Study of a Combinatorial Game in Graphs Through Linear Programming

Authors: Nathann Cohen, Fionn Mc Inerney, Nicolas Nisse, and Stéphane Pérennes

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
In the Spy Game played on a graph G, a single spy travels the ertices of G at speed s, while multiple slow guards strive to have, at all times, one of them within distance d of that spy. In order to determine the smallest number of guards necessary for this task, we analyze the game through a Linear Programming formulation and the fractional strategies it yields for the guards. We then show the equivalence of fractional and integral strategies in trees. This allows us to design a polynomial-time algorithm for computing an optimal strategy in this class of graphs. Using duality in Linear Programming, we also provide non-trivial bounds on the fractional guardnumber of grids and torus. We believe that the approach using fractional relaxation and Linear Programming is promising to obtain new results in the field of combinatorial games.

Cite as

Nathann Cohen, Fionn Mc Inerney, Nicolas Nisse, and Stéphane Pérennes. Study of a Combinatorial Game in Graphs Through Linear Programming. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 22:1-22:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.ISAAC.2017.22,
  author =	{Cohen, Nathann and Mc Inerney, Fionn and Nisse, Nicolas and P\'{e}rennes, St\'{e}phane},
  title =	{{Study of a Combinatorial Game in Graphs Through Linear Programming}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{22:1--22:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.22},
  URN =		{urn:nbn:de:0030-drops-82254},
  doi =		{10.4230/LIPIcs.ISAAC.2017.22},
  annote =	{Keywords: Turn-by-turn games in graphs, Graph algorithms, Linear Programming}
}