Search Results

Documents authored by Mwaniki, Moses Njagi


Document
Comparing Elastic-Degenerate Strings: Algorithms, Lower Bounds, and Applications

Authors: Esteban Gabory, Moses Njagi Mwaniki, Nadia Pisanti, Solon P. Pissis, Jakub Radoszewski, Michelle Sweering, and Wiktor Zuba

Published in: LIPIcs, Volume 259, 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)


Abstract
An elastic-degenerate (ED) string T is a sequence of n sets T[1],…,T[n] containing m strings in total whose cumulative length is N. We call n, m, and N the length, the cardinality and the size of T, respectively. The language of T is defined as ℒ(T) = {S_1 ⋯ S_n : S_i ∈ T[i] for all i ∈ [1,n]}. ED strings have been introduced to represent a set of closely-related DNA sequences, also known as a pangenome. The basic question we investigate here is: Given two ED strings, how fast can we check whether the two languages they represent have a nonempty intersection? We call the underlying problem the ED String Intersection (EDSI) problem. For two ED strings T₁ and T₂ of lengths n₁ and n₂, cardinalities m₁ and m₂, and sizes N₁ and N₂, respectively, we show the following: - There is no 𝒪((N₁N₂)^{1-ε})-time algorithm, thus no 𝒪((N₁m₂+N₂m₁)^{1-ε})-time algorithm and no 𝒪((N₁n₂+N₂n₁)^{1-ε})-time algorithm, for any constant ε > 0, for EDSI even when T₁ and T₂ are over a binary alphabet, unless the Strong Exponential-Time Hypothesis is false. - There is no combinatorial 𝒪((N₁+N₂)^{1.2-ε}f(n₁,n₂))-time algorithm, for any constant ε > 0 and any function f, for EDSI even when T₁ and T₂ are over a binary alphabet, unless the Boolean Matrix Multiplication conjecture is false. - An 𝒪(N₁log N₁log n₁+N₂log N₂log n₂)-time algorithm for outputting a compact (RLE) representation of the intersection language of two unary ED strings. In the case when T₁ and T₂ are given in a compact representation, we show that the problem is NP-complete. - An 𝒪(N₁m₂+N₂m₁)-time algorithm for EDSI. - An Õ(N₁^{ω-1}n₂+N₂^{ω-1}n₁)-time algorithm for EDSI, where ω is the exponent of matrix multiplication; the Õ notation suppresses factors that are polylogarithmic in the input size. We also show that the techniques we develop have applications outside of ED string comparison.

Cite as

Esteban Gabory, Moses Njagi Mwaniki, Nadia Pisanti, Solon P. Pissis, Jakub Radoszewski, Michelle Sweering, and Wiktor Zuba. Comparing Elastic-Degenerate Strings: Algorithms, Lower Bounds, and Applications. In 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 259, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gabory_et_al:LIPIcs.CPM.2023.11,
  author =	{Gabory, Esteban and Mwaniki, Moses Njagi and Pisanti, Nadia and Pissis, Solon P. and Radoszewski, Jakub and Sweering, Michelle and Zuba, Wiktor},
  title =	{{Comparing Elastic-Degenerate Strings: Algorithms, Lower Bounds, and Applications}},
  booktitle =	{34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-276-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{259},
  editor =	{Bulteau, Laurent and Lipt\'{a}k, Zsuzsanna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2023.11},
  URN =		{urn:nbn:de:0030-drops-179650},
  doi =		{10.4230/LIPIcs.CPM.2023.11},
  annote =	{Keywords: elastic-degenerate string, sequence comparison, languages intersection, pangenome, acronym identification}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail