Comparing Elastic-Degenerate Strings: Algorithms, Lower Bounds, and Applications

Authors Esteban Gabory , Moses Njagi Mwaniki , Nadia Pisanti , Solon P. Pissis , Jakub Radoszewski , Michelle Sweering , Wiktor Zuba

Thumbnail PDF


  • Filesize: 1.31 MB
  • 20 pages

Document Identifiers

Author Details

Esteban Gabory
  • CWI, Amsterdam, The Netherlands
Moses Njagi Mwaniki
  • University of Pisa, Italy
Nadia Pisanti
  • University of Pisa, Italy
Solon P. Pissis
  • CWI, Amsterdam, The Netherlands
  • Vrije Universiteit, Amsterdam, The Netherlands
Jakub Radoszewski
  • Institute of Informatics, University of Warsaw, Poland
Michelle Sweering
  • CWI, Amsterdam, The Netherlands
Wiktor Zuba
  • CWI, Amsterdam, The Netherlands

Cite AsGet BibTex

Esteban Gabory, Moses Njagi Mwaniki, Nadia Pisanti, Solon P. Pissis, Jakub Radoszewski, Michelle Sweering, and Wiktor Zuba. Comparing Elastic-Degenerate Strings: Algorithms, Lower Bounds, and Applications. In 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 259, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


An elastic-degenerate (ED) string T is a sequence of n sets T[1],…,T[n] containing m strings in total whose cumulative length is N. We call n, m, and N the length, the cardinality and the size of T, respectively. The language of T is defined as ℒ(T) = {S_1 ⋯ S_n : S_i ∈ T[i] for all i ∈ [1,n]}. ED strings have been introduced to represent a set of closely-related DNA sequences, also known as a pangenome. The basic question we investigate here is: Given two ED strings, how fast can we check whether the two languages they represent have a nonempty intersection? We call the underlying problem the ED String Intersection (EDSI) problem. For two ED strings T₁ and T₂ of lengths n₁ and n₂, cardinalities m₁ and m₂, and sizes N₁ and N₂, respectively, we show the following: - There is no 𝒪((N₁N₂)^{1-ε})-time algorithm, thus no 𝒪((N₁m₂+N₂m₁)^{1-ε})-time algorithm and no 𝒪((N₁n₂+N₂n₁)^{1-ε})-time algorithm, for any constant ε > 0, for EDSI even when T₁ and T₂ are over a binary alphabet, unless the Strong Exponential-Time Hypothesis is false. - There is no combinatorial 𝒪((N₁+N₂)^{1.2-ε}f(n₁,n₂))-time algorithm, for any constant ε > 0 and any function f, for EDSI even when T₁ and T₂ are over a binary alphabet, unless the Boolean Matrix Multiplication conjecture is false. - An 𝒪(N₁log N₁log n₁+N₂log N₂log n₂)-time algorithm for outputting a compact (RLE) representation of the intersection language of two unary ED strings. In the case when T₁ and T₂ are given in a compact representation, we show that the problem is NP-complete. - An 𝒪(N₁m₂+N₂m₁)-time algorithm for EDSI. - An Õ(N₁^{ω-1}n₂+N₂^{ω-1}n₁)-time algorithm for EDSI, where ω is the exponent of matrix multiplication; the Õ notation suppresses factors that are polylogarithmic in the input size. We also show that the techniques we develop have applications outside of ED string comparison.

Subject Classification

ACM Subject Classification
  • Theory of computation → Pattern matching
  • elastic-degenerate string
  • sequence comparison
  • languages intersection
  • pangenome
  • acronym identification


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 434-443. IEEE Computer Society, 2014. URL:
  2. Mai Alzamel, Lorraine A. K. Ayad, Giulia Bernardini, Roberto Grossi, Costas S. Iliopoulos, Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone. Comparing degenerate strings. Fundamenta Informaticae, 175(1-4):41-58, 2020. URL:
  3. Kotaro Aoyama, Yuto Nakashima, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Faster online elastic degenerate string matching. In Gonzalo Navarro, David Sankoff, and Binhai Zhu, editors, Annual Symposium on Combinatorial Pattern Matching, CPM 2018, July 2-4, 2018 - Qingdao, China, volume 105 of LIPIcs, pages 9:1-9:10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL:
  4. Lorraine A. K. Ayad, Carl Barton, and Solon P. Pissis. A faster and more accurate heuristic for cyclic edit distance computation. Pattern Recognition Letters, 88:81-87, 2017. URL:
  5. Jasmijn A. Baaijens, Paola Bonizzoni, Christina Boucher, Gianluca Della Vedova, Yuri Pirola, Raffaella Rizzi, and Jouni Sirén. Computational graph pangenomics: a tutorial on data structures and their applications. Nat. Comput., 21(1):81-108, 2022. URL:
  6. Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 457-466. IEEE Computer Society, 2016. URL:
  7. Ricardo Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information Retrieval - the concepts and technology behind search, Second edition. Pearson Education Ltd., Harlow, England, 2011. URL:
  8. Giulia Bernardini, Alessio Conte, Garance Gourdel, Roberto Grossi, Grigorios Loukides, Nadia Pisanti, Solon P. Pissis, Giulia Punzi, Leen Stougie, and Michelle Sweering. Hide and mine in strings: Hardness and algorithms. In Claudia Plant, Haixun Wang, Alfredo Cuzzocrea, Carlo Zaniolo, and Xindong Wu, editors, 20th IEEE International Conference on Data Mining, ICDM 2020, Sorrento, Italy, November 17-20, 2020, pages 924-929. IEEE, 2020. URL:
  9. Giulia Bernardini, Paweł Gawrychowski, Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone. Even faster elastic-degenerate string matching via fast matrix multiplication. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 21:1-21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL:
  10. Giulia Bernardini, Paweł Gawrychowski, Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone. Elastic-degenerate string matching via fast matrix multiplication. SIAM Journal on Computing, 51(3):549-576, 2022. URL:
  11. Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiability of small depth circuits. In Jianer Chen and Fedor V. Fomin, editors, Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers, volume 5917 of Lecture Notes in Computer Science, pages 75-85. Springer, 2009. URL:
  12. Vincenzo Carletti, Pasquale Foggia, Erik Garrison, Luca Greco, Pierluigi Ritrovato, and Mario Vento. Graph-based representations for supporting genome data analysis and visualization: Opportunities and challenges. In Donatello Conte, Jean-Yves Ramel, and Pasquale Foggia, editors, Graph-Based Representations in Pattern Recognition - 12th IAPR-TC-15 International Workshop, GbRPR 2019, Tours, France, June 19-21, 2019, Proceedings, volume 11510 of Lecture Notes in Computer Science, pages 237-246. Springer, 2019. URL:
  13. Aleksander Cisłak, Szymon Grabowski, and Jan Holub. SOPanG: online text searching over a pan-genome. Bioinformatics, 34(24):4290-4292, 2018. URL:
  14. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009. URL:
  15. Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on Strings. Cambridge University Press, 2007. Google Scholar
  16. N. Rex Dixon and Thomas B. Martin. Automatic Speech and Speaker Recognition. John Wiley & Sons, Inc., USA, 1979. Google Scholar
  17. Esteban Domingo, Carlos García-Crespo, and Celia Perales. Historical perspective on the discovery of the quasispecies concept. Annual Review of Virology, 8(1):51-72, 2021. PMID: 34586874. URL:
  18. Massimo Equi, Tuukka Norri, Jarno Alanko, Bastien Cazaux, Alexandru I. Tomescu, and Veli Mäkinen. Algorithms and complexity on indexing elastic founder graphs. In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs, pages 20:1-20:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL:
  19. Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual Symposium on Foundations of Computer Science, FOCS 1997, Miami Beach, Florida, USA, October 19-22, 1997, pages 137-143. IEEE Computer Society, 1997. URL:
  20. Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1) worst case access time. Journal of the ACM, 31(3):538-544, 1984. URL:
  21. Paweł Gawrychowski, Samah Ghazawi, and Gad M. Landau. On indeterminate strings matching. In Inge Li Gørtz and Oren Weimann, editors, 31st Annual Symposium on Combinatorial Pattern Matching, CPM 2020, June 17-19, 2020, Copenhagen, Denmark, volume 161 of LIPIcs, pages 14:1-14:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL:
  22. Daniel Gibney. An efficient elastic-degenerate text index? Not likely. In Christina Boucher and Sharma V. Thankachan, editors, String Processing and Information Retrieval - 27th International Symposium, SPIRE 2020, Orlando, FL, USA, October 13-15, 2020, Proceedings, volume 12303 of Lecture Notes in Computer Science, pages 76-88. Springer, 2020. URL:
  23. Roberto Grossi, Costas S. Iliopoulos, Chang Liu, Nadia Pisanti, Solon P. Pissis, Ahmad Retha, Giovanna Rosone, Fatima Vayani, and Luca Versari. On-line pattern matching on similar texts. In Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter, editors, 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, July 4-6, 2017, Warsaw, Poland, volume 78 of LIPIcs, pages 9:1-9:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL:
  24. Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology. Cambridge University Press, 1997. URL:
  25. Paul Heckel. A technique for isolating differences between files. Communications of the ACM, 21(4):264-268, 1978. URL:
  26. Costas S. Iliopoulos, Ritu Kundu, and Solon P. Pissis. Efficient pattern matching in elastic-degenerate strings. Information and Computation, 279:104616, 2021. URL:
  27. IUPAC-IUB Commission on Biochemical Nomenclature. Abbreviations and symbols for nucleic acids, polynucleotides, and their constituents. Biochemistry, 9(20):4022-4027, 1970. URL:
  28. Kayla Jacobs, Alon Itai, and Shuly Wintner. Acronyms: identification, expansion and disambiguation. Annals of Mathematics and Artificial Intelligence, 88(5-6):517-532, 2020. URL:
  29. Katrin Kirchhoff and Anne M. Turner. Unsupervised resolution of acronyms and abbreviations in nursing notes using document-level context models. In Cyril Grouin, Thierry Hamon, Aurélie Névéol, and Pierre Zweigenbaum, editors, Proceedings of the Seventh International Workshop on Health Text Mining and Information Analysis, Louhi@EMNLP 2016, Austin, TX, USA, November 5, 2016, pages 52-60. Association for Computational Linguistics, 2016. URL:
  30. Jon M. Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley, 2006. Google Scholar
  31. Divesh R. Kubal and Apurva Nagvenkar. Effective ensembling of transformer based language models for acronyms identification. In Amir Pouran Ben Veyseh, Franck Dernoncourt, Thien Huu Nguyen, Walter Chang, and Leo Anthony Celi, editors, Proceedings of the Workshop on Scientific Document Understanding co-located with 35th AAAI Conference on Artificial Inteligence, SDU@AAAI 2021, Virtual Event, February 9, 2021, volume 2831 of CEUR Workshop Proceedings., 2021. URL:
  32. Cheng-Ju Kuo, Maurice H. T. Ling, Kuan-Ting Lin, and Chun-Nan Hsu. BIOADI: a machine learning approach to identifying abbreviations and definitions in biological literature. BMC Bioinformatics, 10(S-15):7, 2009. URL:
  33. Mark V. Lawson. Finite Automata. Chapman and Hall/CRC, 2004. Google Scholar
  34. Jie Liu, Caihua Liu, and Yalou Huang. Multi-granularity sequence labeling model for acronym expansion identification. Information Sciences, 378:462-474, 2017. URL:
  35. Veli Mäkinen, Bastien Cazaux, Massimo Equi, Tuukka Norri, and Alexandru I. Tomescu. Linear time construction of indexable founder block graphs. In Carl Kingsford and Nadia Pisanti, editors, 20th International Workshop on Algorithms in Bioinformatics, WABI 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 172 of LIPIcs, pages 7:1-7:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL:
  36. Udi Manber and Sun Wu. An algorithm for approximate membership checking with application to password security. Information Processing Letters, 50(4):191-197, 1994. URL:
  37. Gonzalo Navarro. A guided tour to approximate string matching. ACM Computing Surveys, 33(1):31-88, 2001. URL:
  38. Nicola Rizzo and Veli Mäkinen. Indexable elastic founder graphs of minimum height. In Hideo Bannai and Jan Holub, editors, 33rd Annual Symposium on Combinatorial Pattern Matching, CPM 2022, June 27-29, 2022, Prague, Czech Republic, volume 223 of LIPIcs, pages 19:1-19:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL:
  39. Nicola Rizzo and Veli Mäkinen. Linear time construction of indexable elastic founder graphs. In Cristina Bazgan and Henning Fernau, editors, Combinatorial Algorithms - 33rd International Workshop, IWOCA 2022, Trier, Germany, June 7-9, 2022, Proceedings, volume 13270 of Lecture Notes in Computer Science, pages 480-493. Springer, 2022. URL:
  40. Ariel S. Schwartz and Marti A. Hearst. A simple algorithm for identifying abbreviation definitions in biomedical text. In Russ B. Altman, A. Keith Dunker, Lawrence Hunter, and Teri E. Klein, editors, Proceedings of the 8th Pacific Symposium on Biocomputing, PSB 2003, Lihue, Hawaii, USA, January 3-7, 2003, pages 451-462, 2003. URL:
  41. Kazem Taghva and Jeff Gilbreth. Recognizing acronyms and their definitions. International Journal on Document Analysis and Recognition, 1(4):191-198, 1999. URL:
  42. The Computational Pan-Genomics Consortium. Computational pan-genomics: status, promises and challenges. Briefings in Bioinformatics, 19(1):118-135, 2018. Google Scholar
  43. Amir Pouran Ben Veyseh, Franck Dernoncourt, Quan Hung Tran, and Thien Huu Nguyen. What does this acronym mean? Introducing a new dataset for acronym identification and disambiguation. In Donia Scott, Núria Bel, and Chengqing Zong, editors, Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020, pages 3285-3301. International Committee on Computational Linguistics, 2020. URL:
  44. Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoretical Computer Science, 348(2-3):357-365, 2005. URL:
  45. Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix and triangle problems. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 645-654. IEEE Computer Society, 2010. URL: