Search Results

Documents authored by Nisse, Nicolas


Document
Recontamination Helps a Lot to Hunt a Rabbit

Authors: Thomas Dissaux, Foivos Fioravantes, Harmender Gahlawat, and Nicolas Nisse

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
The Hunters and Rabbit game is played on a graph G where the Hunter player shoots at k vertices in every round while the Rabbit player occupies an unknown vertex and, if it is not shot, must move to a neighbouring vertex after each round. The Rabbit player wins if it can ensure that its position is never shot. The Hunter player wins otherwise. The hunter number h(G) of a graph G is the minimum integer k such that the Hunter player has a winning strategy (i.e., allowing him to win whatever be the strategy of the Rabbit player). This game has been studied in several graph classes, in particular in bipartite graphs (grids, trees, hypercubes...), but the computational complexity of computing h(G) remains open in general graphs and even in more restricted graph classes such as trees. To progress further in this study, we propose a notion of monotonicity (a well-studied and useful property in classical pursuit-evasion games such as Graph Searching games) for the Hunters and Rabbit game imposing that, roughly, a vertex that has already been shot "must not host the rabbit anymore". This allows us to obtain new results in various graph classes. More precisely, let the monotone hunter number mh(G) of a graph G be the minimum integer k such that the Hunter player has a monotone winning strategy. We show that pw(G) ≤ mh(G) ≤ pw(G)+1 for any graph G with pathwidth pw(G), which implies that computing mh(G), or even approximating mh(G) up to an additive constant, is NP-hard. Then, we show that mh(G) can be computed in polynomial time in split graphs, interval graphs, cographs and trees. These results go through structural characterisations which allow us to relate the monotone hunter number with the pathwidth in some of these graph classes. In all cases, this allows us to specify the hunter number or to show that there may be an arbitrary gap between h and mh, i.e., that monotonicity does not help. In particular, we show that, for every k ≥ 3, there exists a tree T with h(T) = 2 and mh(T) = k. We conclude by proving that computing h (resp., mh) is FPT parameterised by the minimum size of a vertex cover.

Cite as

Thomas Dissaux, Foivos Fioravantes, Harmender Gahlawat, and Nicolas Nisse. Recontamination Helps a Lot to Hunt a Rabbit. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 42:1-42:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dissaux_et_al:LIPIcs.MFCS.2023.42,
  author =	{Dissaux, Thomas and Fioravantes, Foivos and Gahlawat, Harmender and Nisse, Nicolas},
  title =	{{Recontamination Helps a Lot to Hunt a Rabbit}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{42:1--42:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.42},
  URN =		{urn:nbn:de:0030-drops-185763},
  doi =		{10.4230/LIPIcs.MFCS.2023.42},
  annote =	{Keywords: Hunter and Rabbit, Monotonicity, Graph Searching}
}
Document
Space and Time Trade-Off for the k Shortest Simple Paths Problem

Authors: Ali Al Zoobi, David Coudert, and Nicolas Nisse

Published in: LIPIcs, Volume 160, 18th International Symposium on Experimental Algorithms (SEA 2020)


Abstract
The k shortest simple path problem (kSSP) asks to compute a set of top-k shortest simple paths from a vertex s to a vertex t in a digraph. Yen (1971) proposed the first algorithm with the best known theoretical complexity of O(kn(m+n log n)) for a digraph with n vertices and m arcs. Since then, the problem has been widely studied from an algorithm engineering perspective, and impressive improvements have been achieved. In particular, Kurz and Mutzel (2016) proposed a sidetracks-based (SB) algorithm which is currently the fastest solution. In this work, we propose two improvements of this algorithm. We first show how to speed up the SB algorithm using dynamic updates of shortest path trees. We did experiments on some road networks of the 9th DIMAC'S challenge with up to about half a million nodes and one million arcs. Our computational results show an average speed up by a factor of 1.5 to 2 with a similar working memory consumption as SB. We then propose a second algorithm enabling to significantly reduce the working memory at the cost of an increase of the running time (up to two times slower). Our experiments on the same data set show, on average, a reduction by a factor of 1.5 to 2 of the working memory.

Cite as

Ali Al Zoobi, David Coudert, and Nicolas Nisse. Space and Time Trade-Off for the k Shortest Simple Paths Problem. In 18th International Symposium on Experimental Algorithms (SEA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 160, pp. 18:1-18:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{alzoobi_et_al:LIPIcs.SEA.2020.18,
  author =	{Al Zoobi, Ali and Coudert, David and Nisse, Nicolas},
  title =	{{Space and Time Trade-Off for the k Shortest Simple Paths Problem}},
  booktitle =	{18th International Symposium on Experimental Algorithms (SEA 2020)},
  pages =	{18:1--18:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-148-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{160},
  editor =	{Faro, Simone and Cantone, Domenico},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2020.18},
  URN =		{urn:nbn:de:0030-drops-120925},
  doi =		{10.4230/LIPIcs.SEA.2020.18},
  annote =	{Keywords: k shortest simple paths, graph algorithm, space-time trade-off}
}
Document
Study of a Combinatorial Game in Graphs Through Linear Programming

Authors: Nathann Cohen, Fionn Mc Inerney, Nicolas Nisse, and Stéphane Pérennes

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
In the Spy Game played on a graph G, a single spy travels the ertices of G at speed s, while multiple slow guards strive to have, at all times, one of them within distance d of that spy. In order to determine the smallest number of guards necessary for this task, we analyze the game through a Linear Programming formulation and the fractional strategies it yields for the guards. We then show the equivalence of fractional and integral strategies in trees. This allows us to design a polynomial-time algorithm for computing an optimal strategy in this class of graphs. Using duality in Linear Programming, we also provide non-trivial bounds on the fractional guardnumber of grids and torus. We believe that the approach using fractional relaxation and Linear Programming is promising to obtain new results in the field of combinatorial games.

Cite as

Nathann Cohen, Fionn Mc Inerney, Nicolas Nisse, and Stéphane Pérennes. Study of a Combinatorial Game in Graphs Through Linear Programming. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 22:1-22:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.ISAAC.2017.22,
  author =	{Cohen, Nathann and Mc Inerney, Fionn and Nisse, Nicolas and P\'{e}rennes, St\'{e}phane},
  title =	{{Study of a Combinatorial Game in Graphs Through Linear Programming}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{22:1--22:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.22},
  URN =		{urn:nbn:de:0030-drops-82254},
  doi =		{10.4230/LIPIcs.ISAAC.2017.22},
  annote =	{Keywords: Turn-by-turn games in graphs, Graph algorithms, Linear Programming}
}
Document
Spy-Game on Graphs

Authors: Nathann Cohen, Mathieu Hilaire, Nícolas A. Martins, Nicolas Nisse, and Stéphane Pérennes

Published in: LIPIcs, Volume 49, 8th International Conference on Fun with Algorithms (FUN 2016)


Abstract
We define and study the following two-player game on a graph G. Let k in N^*. A set of k guards is occupying some vertices of G while one spy is standing at some node. At each turn, first the spy may move along at most s edges, where s in N^* is his speed. Then, each guard may move along one edge. The spy and the guards may occupy same vertices. The spy has to escape the surveillance of the guards, i.e., must reach a vertex at distance more than d in N (a predefined distance) from every guard. Can the spy win against k guards? Similarly, what is the minimum distance d such that k guards may ensure that at least one of them remains at distance at most d from the spy? This game generalizes two well-studied games: Cops and robber games (when s=1) and Eternal Dominating Set (when s is unbounded). We consider the computational complexity of the problem, showing that it is NP-hard and that it is PSPACE-hard in DAGs. Then, we establish tight tradeoffs between the number of guards and the required distance d when G is a path or a cycle. Our main result is that there exists beta>0 such that Omega(n^{1+beta}) guards are required to win in any n*n grid.

Cite as

Nathann Cohen, Mathieu Hilaire, Nícolas A. Martins, Nicolas Nisse, and Stéphane Pérennes. Spy-Game on Graphs. In 8th International Conference on Fun with Algorithms (FUN 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 49, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.FUN.2016.10,
  author =	{Cohen, Nathann and Hilaire, Mathieu and Martins, N{\'\i}colas A. and Nisse, Nicolas and P\'{e}rennes, St\'{e}phane},
  title =	{{Spy-Game on Graphs}},
  booktitle =	{8th International Conference on Fun with Algorithms (FUN 2016)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-005-7},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{49},
  editor =	{Demaine, Erik D. and Grandoni, Fabrizio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2016.10},
  URN =		{urn:nbn:de:0030-drops-58782},
  doi =		{10.4230/LIPIcs.FUN.2016.10},
  annote =	{Keywords: graph, two-player games, cops and robber games, complexity}
}
Document
Weighted Coloring in Trees

Authors: Julio Araujo, Nicolas Nisse, and Stéphane Pérennes

Published in: LIPIcs, Volume 25, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)


Abstract
A proper coloring of a graph is a partition of its vertex set into stable sets, where each part corresponds to a color. For a vertex-weighted graph, the weight of a color is the maximum weight of its vertices. The weight of a coloring is the sum of the weights of its colors. Guan and Zhu (1997) defined the weighted chromatic number of a vertex-weighted graph G as the smallest weight of a proper coloring of G. If vertices of a graph have weight 1, its weighted chromatic number coincides with its chromatic number. Thus, the problem of computing the weighted chromatic number, a.k.a. Max Coloring Problem, is NP-hard in general graphs. It remains NP-hard in some graph classes as bipartite graphs. Approximation algorithms have been designed in several graph classes, in particular, there exists a PTAS for trees. Surprisingly, the time-complexity of computing this parameter in trees is still open. The Exponential Time Hypothesis (ETH) states that 3-SAT cannot be solved in sub-exponential time. We show that, assuming ETH, the best algorithm to compute the weighted chromatic number of n-node trees has time-complexity n O(log(n)). Our result mainly relies on proving that, when computing an optimal proper weighted coloring of a graph G, it is hard to combine colorings of its connected components.

Cite as

Julio Araujo, Nicolas Nisse, and Stéphane Pérennes. Weighted Coloring in Trees. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 25, pp. 75-86, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{araujo_et_al:LIPIcs.STACS.2014.75,
  author =	{Araujo, Julio and Nisse, Nicolas and P\'{e}rennes, St\'{e}phane},
  title =	{{Weighted Coloring in Trees}},
  booktitle =	{31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)},
  pages =	{75--86},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-65-1},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{25},
  editor =	{Mayr, Ernst W. and Portier, Natacha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2014.75},
  URN =		{urn:nbn:de:0030-drops-44484},
  doi =		{10.4230/LIPIcs.STACS.2014.75},
  annote =	{Keywords: Weighted Coloring, Max Coloring, Exponential Time Hypothesis, 3-SAT}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail