Search Results

Documents authored by Noquez, Victoria


Document
A Complete Inference System for Probabilistic Infinite Trace Equivalence

Authors: Corina Cîrstea, Lawrence S. Moss, Victoria Noquez, Todd Schmid, Alexandra Silva, and Ana Sokolova

Published in: LIPIcs, Volume 326, 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)


Abstract
We present the first sound and complete axiomatization of infinite trace semantics for generative probabilistic transition systems. Our approach is categorical, and we build on recent results on proper functors over convex sets. At the core of our proof is a characterization of infinite traces as the final coalgebra of a functor over convex algebras. Somewhat surprisingly, our axiomatization of infinite trace semantics coincides with that of finite trace semantics, even though the techniques used in the completeness proof are significantly different.

Cite as

Corina Cîrstea, Lawrence S. Moss, Victoria Noquez, Todd Schmid, Alexandra Silva, and Ana Sokolova. A Complete Inference System for Probabilistic Infinite Trace Equivalence. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 30:1-30:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cirstea_et_al:LIPIcs.CSL.2025.30,
  author =	{C\^{i}rstea, Corina and Moss, Lawrence S. and Noquez, Victoria and Schmid, Todd and Silva, Alexandra and Sokolova, Ana},
  title =	{{A Complete Inference System for Probabilistic Infinite Trace Equivalence}},
  booktitle =	{33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)},
  pages =	{30:1--30:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-362-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{326},
  editor =	{Endrullis, J\"{o}rg and Schmitz, Sylvain},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2025.30},
  URN =		{urn:nbn:de:0030-drops-227870},
  doi =		{10.4230/LIPIcs.CSL.2025.30},
  annote =	{Keywords: Coalgebra, infinite trace, semantics, logic, convex sets}
}
Document
Fractals from Regular Behaviours

Authors: Todd Schmid, Victoria Noquez, and Lawrence S. Moss

Published in: LIPIcs, Volume 270, 10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)


Abstract
We are interested in connections between the theory of fractal sets obtained as attractors of iterated function systems and process calculi. To this end, we reinterpret Milner’s expressions for processes as contraction operators on a complete metric space. When the space is, for example, the plane, the denotations of fixed point terms correspond to familiar fractal sets. We give a sound and complete axiomatization of fractal equivalence, the congruence on terms consisting of pairs that construct identical self-similar sets in all interpretations. We further make connections to labelled Markov chains and to invariant measures. In all of this work, we use important results from process calculi. For example, we use Rabinovich’s completeness theorem for trace equivalence in our own completeness theorem. In addition to our results, we also raise many questions related to both fractals and process calculi.

Cite as

Todd Schmid, Victoria Noquez, and Lawrence S. Moss. Fractals from Regular Behaviours. In 10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 270, pp. 14:1-14:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{schmid_et_al:LIPIcs.CALCO.2023.14,
  author =	{Schmid, Todd and Noquez, Victoria and Moss, Lawrence S.},
  title =	{{Fractals from Regular Behaviours}},
  booktitle =	{10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)},
  pages =	{14:1--14:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-287-7},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{270},
  editor =	{Baldan, Paolo and de Paiva, Valeria},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2023.14},
  URN =		{urn:nbn:de:0030-drops-188111},
  doi =		{10.4230/LIPIcs.CALCO.2023.14},
  annote =	{Keywords: fixed-point terms, labelled transition system, fractal, final coalgebra, equational logic, completeness}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail