Search Results

Documents authored by Nora, Pedro


Document
Identity-Preserving Lax Extensions and Where to Find Them

Authors: Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
Generic notions of bisimulation for various types of systems (nondeterministic, probabilistic, weighted etc.) rely on identity-preserving (normal) lax extensions of the functor encapsulating the system type, in the paradigm of universal coalgebra. It is known that preservation of weak pullbacks is a sufficient condition for a functor to admit a normal lax extension (the Barr extension, which in fact is then even strict); in the converse direction, nothing is currently known about necessary (weak) pullback preservation conditions for the existence of normal lax extensions. In the present work, we narrow this gap by showing on the one hand that functors admitting a normal lax extension preserve 1/4-iso pullbacks, i.e. pullbacks in which at least one of the projections is an isomorphism. On the other hand, we give sufficient conditions, showing that a functor admits a normal lax extension if it weakly preserves either 1/4-iso pullbacks and 4/4-epi pullbacks (i.e. pullbacks in which all morphisms are epic) or inverse images. We apply these criteria to concrete examples, in particular to functors modelling neighbourhood systems and weighted systems.

Cite as

Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild. Identity-Preserving Lax Extensions and Where to Find Them. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 40:1-40:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{goncharov_et_al:LIPIcs.STACS.2025.40,
  author =	{Goncharov, Sergey and Hofmann, Dirk and Nora, Pedro and Schr\"{o}der, Lutz and Wild, Paul},
  title =	{{Identity-Preserving Lax Extensions and Where to Find Them}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{40:1--40:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.40},
  URN =		{urn:nbn:de:0030-drops-228665},
  doi =		{10.4230/LIPIcs.STACS.2025.40},
  annote =	{Keywords: (Bi-)simulations, lax extensions, modal logics, coalgebra}
}
Document
Quantitative Hennessy-Milner Theorems via Notions of Density

Authors: Jonas Forster, Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild

Published in: LIPIcs, Volume 252, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023)


Abstract
The classical Hennessy-Milner theorem is an important tool in the analysis of concurrent processes; it guarantees that any two non-bisimilar states in finitely branching labelled transition systems can be distinguished by a modal formula. Numerous variants of this theorem have since been established for a wide range of logics and system types, including quantitative versions where lower bounds on behavioural distance (e.g. in weighted, metric, or probabilistic transition systems) are witnessed by quantitative modal formulas. Both the qualitative and the quantitative versions have been accommodated within the framework of coalgebraic logic, with distances taking values in quantales, subject to certain restrictions, such as being so-called value quantales. While previous quantitative coalgebraic Hennessy-Milner theorems apply only to liftings of set functors to (pseudo)metric spaces, in the present work we provide a quantitative coalgebraic Hennessy-Milner theorem that applies more widely to functors native to metric spaces; notably, we thus cover, for the first time, the well-known Hennessy-Milner theorem for continuous probabilistic transition systems, where transitions are given by Borel measures on metric spaces, as an instance of such a general result. In the process, we also relax the restrictions imposed on the quantale, and additionally parametrize the technical account over notions of closure and, hence, density, providing associated variants of the Stone-Weierstraß theorem; this allows us to cover, for instance, behavioural ultrametrics.

Cite as

Jonas Forster, Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild. Quantitative Hennessy-Milner Theorems via Notions of Density. In 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 252, pp. 22:1-22:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{forster_et_al:LIPIcs.CSL.2023.22,
  author =	{Forster, Jonas and Goncharov, Sergey and Hofmann, Dirk and Nora, Pedro and Schr\"{o}der, Lutz and Wild, Paul},
  title =	{{Quantitative Hennessy-Milner Theorems via Notions of Density}},
  booktitle =	{31st EACSL Annual Conference on Computer Science Logic (CSL 2023)},
  pages =	{22:1--22:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-264-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{252},
  editor =	{Klin, Bartek and Pimentel, Elaine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2023.22},
  URN =		{urn:nbn:de:0030-drops-174836},
  doi =		{10.4230/LIPIcs.CSL.2023.22},
  annote =	{Keywords: Behavioural distances, coalgebra, characteristic modal logics, density, Hennessy-Milner theorems, quantale-enriched categories, Stone-Weierstra{\ss} theorems}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail