Search Results

Documents authored by Qu, Ziyan


Document
F3B: A Low-Overhead Blockchain Architecture with Per-Transaction Front-Running Protection

Authors: Haoqian Zhang, Louis-Henri Merino, Ziyan Qu, Mahsa Bastankhah, Vero Estrada-Galiñanes, and Bryan Ford

Published in: LIPIcs, Volume 282, 5th Conference on Advances in Financial Technologies (AFT 2023)


Abstract
Front-running attacks, which benefit from advanced knowledge of pending transactions, have proliferated in the blockchain space since the emergence of decentralized finance. Front-running causes devastating losses to honest participants and continues to endanger the fairness of the ecosystem. We present Flash Freezing Flash Boys (F3B), a blockchain architecture that addresses front-running attacks by using threshold cryptography. In F3B, a user generates a symmetric key to encrypt their transaction, and once the underlying consensus layer has finalized the transaction, a decentralized secret-management committee reveals this key. F3B mitigates front-running attacks because, before the consensus group finalizes it, an adversary can no longer read the content of a transaction, thus preventing the adversary from benefiting from advanced knowledge of pending transactions. Unlike other mitigation systems, F3B properly ensures that all unfinalized transactions, even with significant delays, remain private by adopting per-transaction protection. Furthermore, F3B addresses front-running at the execution layer; thus, our solution is agnostic to the underlying consensus algorithm and compatible with existing smart contracts. We evaluated F3B on Ethereum with a modified execution layer and found only a negligible (0.026%) increase in transaction latency, specifically due to running threshold decryption with a 128-member secret-management committee after a transaction is finalized; this indicates that F3B is both practical and low-cost.

Cite as

Haoqian Zhang, Louis-Henri Merino, Ziyan Qu, Mahsa Bastankhah, Vero Estrada-Galiñanes, and Bryan Ford. F3B: A Low-Overhead Blockchain Architecture with Per-Transaction Front-Running Protection. In 5th Conference on Advances in Financial Technologies (AFT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 282, pp. 3:1-3:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.AFT.2023.3,
  author =	{Zhang, Haoqian and Merino, Louis-Henri and Qu, Ziyan and Bastankhah, Mahsa and Estrada-Gali\~{n}anes, Vero and Ford, Bryan},
  title =	{{F3B: A Low-Overhead Blockchain Architecture with Per-Transaction Front-Running Protection}},
  booktitle =	{5th Conference on Advances in Financial Technologies (AFT 2023)},
  pages =	{3:1--3:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-303-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{282},
  editor =	{Bonneau, Joseph and Weinberg, S. Matthew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2023.3},
  URN =		{urn:nbn:de:0030-drops-191921},
  doi =		{10.4230/LIPIcs.AFT.2023.3},
  annote =	{Keywords: Blockchain, DeFi, Front-running Mitigation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail