Search Results

Documents authored by Rastogi, Aseem


Document
Reliable State Machines: A Framework for Programming Reliable Cloud Services

Authors: Suvam Mukherjee, Nitin John Raj, Krishnan Govindraj, Pantazis Deligiannis, Chandramouleswaran Ravichandran, Akash Lal, Aseem Rastogi, and Raja Krishnaswamy

Published in: LIPIcs, Volume 134, 33rd European Conference on Object-Oriented Programming (ECOOP 2019)


Abstract
Building reliable applications for the cloud is challenging because of unpredictable failures during a program’s execution. This paper presents a programming framework, called Reliable State Machines (RSMs), that offers fault-tolerance by construction. In our framework, an application comprises several (possibly distributed) RSMs that communicate with each other via messages, much in the style of actor-based programming. Each RSM is fault-tolerant by design, thereby offering the illusion of being "always-alive". An RSM is guaranteed to process each input request exactly once, as one would expect in a failure-free environment. The RSM runtime automatically takes care of persisting state and rehydrating it on a failover. We present the core syntax and semantics of RSMs, along with a formal proof of failure-transparency. We provide a .NET implementation of the RSM framework for deploying services to Microsoft Azure. We carry out an extensive performance evaluation on micro-benchmarks to show that one can build high-throughput applications with RSMs. We also present a case study where we rewrite a significant part of a production cloud service using RSMs. The resulting service has simpler code and exhibits production-grade performance.

Cite as

Suvam Mukherjee, Nitin John Raj, Krishnan Govindraj, Pantazis Deligiannis, Chandramouleswaran Ravichandran, Akash Lal, Aseem Rastogi, and Raja Krishnaswamy. Reliable State Machines: A Framework for Programming Reliable Cloud Services. In 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 134, pp. 18:1-18:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{mukherjee_et_al:LIPIcs.ECOOP.2019.18,
  author =	{Mukherjee, Suvam and Raj, Nitin John and Govindraj, Krishnan and Deligiannis, Pantazis and Ravichandran, Chandramouleswaran and Lal, Akash and Rastogi, Aseem and Krishnaswamy, Raja},
  title =	{{Reliable State Machines: A Framework for Programming Reliable Cloud Services}},
  booktitle =	{33rd European Conference on Object-Oriented Programming (ECOOP 2019)},
  pages =	{18:1--18:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-111-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{134},
  editor =	{Donaldson, Alastair F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2019.18},
  URN =		{urn:nbn:de:0030-drops-108101},
  doi =		{10.4230/LIPIcs.ECOOP.2019.18},
  annote =	{Keywords: Fault tolerance, Cloud computing, Actor framework}
}
Document
Everest: Towards a Verified, Drop-in Replacement of HTTPS

Authors: Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet, Chris Hawblitzel, Catalin Hritcu, Samin Ishtiaq, Markulf Kohlweiss, Rustan Leino, Jay Lorch, Kenji Maillard, Jianyang Pan, Bryan Parno, Jonathan Protzenko, Tahina Ramananandro, Ashay Rane, Aseem Rastogi, Nikhil Swamy, Laure Thompson, Peng Wang, Santiago Zanella-Béguelin, and Jean-Karim Zinzindohoué

Published in: LIPIcs, Volume 71, 2nd Summit on Advances in Programming Languages (SNAPL 2017)


Abstract
The HTTPS ecosystem is the foundation on which Internet security is built. At the heart of this ecosystem is the Transport Layer Security (TLS) protocol, which in turn uses the X.509 public-key infrastructure and numerous cryptographic constructions and algorithms. Unfortunately, this ecosystem is extremely brittle, with headline-grabbing attacks and emergency patches many times a year. We describe our ongoing efforts in Everest (The Everest VERified End-to-end Secure Transport) a project that aims to build and deploy a verified version of TLS and other components of HTTPS, replacing the current infrastructure with proven, secure software. Aiming both at full verification and usability, we conduct high-level code-based, game-playing proofs of security on cryptographic implementations that yield efficient, deployable code, at the level of C and assembly. Concretely, we use F*, a dependently typed language for programming, meta-programming, and proving at a high level, while relying on low-level DSLs embedded within F* for programming low-level components when necessary for performance and, sometimes, side-channel resistance. To compose the pieces, we compile all our code to source-like C and assembly, suitable for deployment and integration with existing code bases, as well as audit by independent security experts. Our main results so far include (1) the design of Low*, a subset of F* designed for C-like imperative programming but with high-level verification support, and KreMLin, a compiler that extracts Low* programs to C; (2) an implementation of the TLS-1.3 record layer in Low*, together with a proof of its concrete cryptographic security; (3) Vale, a new DSL for verified assembly language, and several optimized cryptographic primitives proven functionally correct and side-channel resistant. In an early deployment, all our verified software is integrated and deployed within libcurl, a widely used library of networking protocols.

Cite as

Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet, Chris Hawblitzel, Catalin Hritcu, Samin Ishtiaq, Markulf Kohlweiss, Rustan Leino, Jay Lorch, Kenji Maillard, Jianyang Pan, Bryan Parno, Jonathan Protzenko, Tahina Ramananandro, Ashay Rane, Aseem Rastogi, Nikhil Swamy, Laure Thompson, Peng Wang, Santiago Zanella-Béguelin, and Jean-Karim Zinzindohoué. Everest: Towards a Verified, Drop-in Replacement of HTTPS. In 2nd Summit on Advances in Programming Languages (SNAPL 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 71, pp. 1:1-1:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bhargavan_et_al:LIPIcs.SNAPL.2017.1,
  author =	{Bhargavan, Karthikeyan and Bond, Barry and Delignat-Lavaud, Antoine and Fournet, C\'{e}dric and Hawblitzel, Chris and Hritcu, Catalin and Ishtiaq, Samin and Kohlweiss, Markulf and Leino, Rustan and Lorch, Jay and Maillard, Kenji and Pan, Jianyang and Parno, Bryan and Protzenko, Jonathan and Ramananandro, Tahina and Rane, Ashay and Rastogi, Aseem and Swamy, Nikhil and Thompson, Laure and Wang, Peng and Zanella-B\'{e}guelin, Santiago and Zinzindohou\'{e}, Jean-Karim},
  title =	{{Everest: Towards a Verified, Drop-in Replacement of HTTPS}},
  booktitle =	{2nd Summit on Advances in Programming Languages (SNAPL 2017)},
  pages =	{1:1--1:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-032-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{71},
  editor =	{Lerner, Benjamin S. and Bod{\'\i}k, Rastislav and Krishnamurthi, Shriram},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2017.1},
  URN =		{urn:nbn:de:0030-drops-71196},
  doi =		{10.4230/LIPIcs.SNAPL.2017.1},
  annote =	{Keywords: Security, Cryptography, Verification, TLS}
}