Search Results

Documents authored by Roy, Arnab


Document
SoK: Zero-Knowledge Range Proofs

Authors: Miranda Christ, Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Deepak Maram, Arnab Roy, and Joy Wang

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
Zero-knowledge range proofs (ZKRPs) allow a prover to convince a verifier that a secret value lies in a given interval. ZKRPs have numerous applications: from anonymous credentials and auctions, to confidential transactions in cryptocurrencies. At the same time, a plethora of ZKRP constructions exist in the literature, each with its own trade-offs. In this work, we systematize the knowledge around ZKRPs. We create a classification of existing constructions based on the underlying building techniques, and we summarize their properties. We provide comparisons between schemes both in terms of properties as well as efficiency levels, and construct a guideline to assist in the selection of an appropriate ZKRP for different application requirements. Finally, we discuss a number of interesting open research problems.

Cite as

Miranda Christ, Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Deepak Maram, Arnab Roy, and Joy Wang. SoK: Zero-Knowledge Range Proofs. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 14:1-14:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{christ_et_al:LIPIcs.AFT.2024.14,
  author =	{Christ, Miranda and Baldimtsi, Foteini and Chalkias, Konstantinos Kryptos and Maram, Deepak and Roy, Arnab and Wang, Joy},
  title =	{{SoK: Zero-Knowledge Range Proofs}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{14:1--14:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.14},
  URN =		{urn:nbn:de:0030-drops-209504},
  doi =		{10.4230/LIPIcs.AFT.2024.14},
  annote =	{Keywords: Range proofs, zero knowledge}
}
Document
STROBE: Streaming Threshold Random Beacons

Authors: Donald Beaver, Konstantinos Chalkias, Mahimna Kelkar, Lefteris Kokoris-Kogias, Kevin Lewi, Ladi de Naurois, Valeria Nikolaenko, Arnab Roy, and Alberto Sonnino

Published in: LIPIcs, Volume 282, 5th Conference on Advances in Financial Technologies (AFT 2023)


Abstract
We revisit decentralized random beacons with a focus on practical distributed applications. Decentralized random beacons (Beaver and So, Eurocrypt'93) provide the functionality for n parties to generate an unpredictable sequence of bits in a way that cannot be biased, which is useful for any decentralized protocol requiring trusted randomness. Existing beacon constructions are highly inefficient in practical settings where protocol parties need to rejoin after crashes or disconnections, and more significantly where smart contracts may rely on arbitrary index points in high-volume streams. For this, we introduce a new notion of history-generating decentralized random beacons (HGDRBs). Roughly, the history-generation property of HGDRBs allows for previous beacon outputs to be efficiently generated knowing only the current value and the public key. At application layers, history-generation supports registering a sparser set of on-chain values if desired, so that apps like lotteries can utilize on-chain values without incurring high-frequency costs, enjoying all the benefits of DRBs implemented off-chain or with decoupled, special-purpose chains. Unlike rollups, HG is tailored specifically to recovering and verifying pseudorandom bit sequences and thus enjoys unique optimizations investigated in this work. We introduce STROBE: an efficient HGDRB construction which generalizes the original squaring-based RSA approach of Beaver and So. STROBE enjoys several useful properties that make it suited for practical applications that use beacons: 1) history-generating: it can regenerate and verify high-throughput beacon streams, supporting sparse (thus cost-effective) ledger entries; 2) concisely self-verifying: NIZK-free, with state and validation employing a single ring element; 3) eco-friendly: stake-based rather than work based; 4) unbounded: refresh-free, addressing limitations of Beaver and So; 5) delay-free: results are immediately available. 6) storage-efficient: the last beacon suffices to derive all past outputs, thus O(1) storage requirements for nodes serving the whole history.

Cite as

Donald Beaver, Konstantinos Chalkias, Mahimna Kelkar, Lefteris Kokoris-Kogias, Kevin Lewi, Ladi de Naurois, Valeria Nikolaenko, Arnab Roy, and Alberto Sonnino. STROBE: Streaming Threshold Random Beacons. In 5th Conference on Advances in Financial Technologies (AFT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 282, pp. 7:1-7:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{beaver_et_al:LIPIcs.AFT.2023.7,
  author =	{Beaver, Donald and Chalkias, Konstantinos and Kelkar, Mahimna and Kokoris-Kogias, Lefteris and Lewi, Kevin and de Naurois, Ladi and Nikolaenko, Valeria and Roy, Arnab and Sonnino, Alberto},
  title =	{{STROBE: Streaming Threshold Random Beacons}},
  booktitle =	{5th Conference on Advances in Financial Technologies (AFT 2023)},
  pages =	{7:1--7:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-303-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{282},
  editor =	{Bonneau, Joseph and Weinberg, S. Matthew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2023.7},
  URN =		{urn:nbn:de:0030-drops-191969},
  doi =		{10.4230/LIPIcs.AFT.2023.7},
  annote =	{Keywords: decentralized randomness, beacons, consensus, blockchain, lottery}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail