Search Results

Documents authored by Salvy, Zéphyr


Document
Phase Transition for Tree-Rooted Maps

Authors: Marie Albenque, Éric Fusy, and Zéphyr Salvy

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
We introduce a model of tree-rooted planar maps weighted by their number of 2-connected blocks. We study its enumerative properties and prove that it undergoes a phase transition. We give the distribution of the size of the largest 2-connected blocks in the three regimes (subcritical, critical and supercritical) and further establish that the scaling limit is the Brownian Continuum Random Tree in the critical and supercritical regimes, with respective rescalings √{n/log(n)} and √n.

Cite as

Marie Albenque, Éric Fusy, and Zéphyr Salvy. Phase Transition for Tree-Rooted Maps. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 6:1-6:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{albenque_et_al:LIPIcs.AofA.2024.6,
  author =	{Albenque, Marie and Fusy, \'{E}ric and Salvy, Z\'{e}phyr},
  title =	{{Phase Transition for Tree-Rooted Maps}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{6:1--6:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.6},
  URN =		{urn:nbn:de:0030-drops-204413},
  doi =		{10.4230/LIPIcs.AofA.2024.6},
  annote =	{Keywords: Asymptotic Enumeration, Planar maps, Random trees, Phase transition}
}