Search Results

Documents authored by Schneider, Michael


Document
Probabilistic Analysis of LLL Reduced Bases

Authors: Michael Schneider

Published in: Dagstuhl Seminar Proceedings, Volume 9221, Algorithms and Number Theory (2009)


Abstract
LLL reduction, originally founded in 1982 to factor certain polynomials, is a useful tool in public key cryptanalysis. The search for short lattice vectors helps determining the practical hardness of lattice problems, which are supposed to be secure against quantum computer attacks. It is a fact that in practice, the LLL algorithm finds much shorter vectors than its theoretic analysis guarantees. Therefore one can see that the guaranteed worst case bounds are not helpful for practical purposes. We use a probabilistic approach to give an estimate for the length of the shortest vector in an LLL-reduced bases that is tighter than the worst case bounds.

Cite as

Michael Schneider. Probabilistic Analysis of LLL Reduced Bases. In Algorithms and Number Theory. Dagstuhl Seminar Proceedings, Volume 9221, pp. 1-6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{schneider:DagSemProc.09221.4,
  author =	{Schneider, Michael},
  title =	{{Probabilistic Analysis of LLL Reduced Bases}},
  booktitle =	{Algorithms and Number Theory},
  pages =	{1--6},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2009},
  volume =	{9221},
  editor =	{Johannes A. Buchmann and John Cremona and Michael E. Pohst},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09221.4},
  URN =		{urn:nbn:de:0030-drops-21267},
  doi =		{10.4230/DagSemProc.09221.4},
  annote =	{Keywords: Lattice reduction, LLL algorithm}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail