Search Results

Documents authored by Shahkarami, Golnoosh


Document
Learning-Augmented Online TSP on Rings, Trees, Flowers and (Almost) Everywhere Else

Authors: Evripidis Bampis, Bruno Escoffier, Themis Gouleakis, Niklas Hahn, Kostas Lakis, Golnoosh Shahkarami, and Michalis Xefteris

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We study the Online Traveling Salesperson Problem (OLTSP) with predictions. In OLTSP, a sequence of initially unknown requests arrive over time at points (locations) of a metric space. The goal is, starting from a particular point of the metric space (the origin), to serve all these requests while minimizing the total time spent. The server moves with unit speed or is "waiting" (zero speed) at some location. We consider two variants: in the open variant, the goal is achieved when the last request is served. In the closed one, the server additionally has to return to the origin. We adopt a prediction model, introduced for OLTSP on the line [Gouleakis et al., 2023], in which the predictions correspond to the locations of the requests and extend it to more general metric spaces. We first propose an oracle-based algorithmic framework, inspired by previous work [Bampis et al., 2023]. This framework allows us to design online algorithms for general metric spaces that provide competitive ratio guarantees which, given perfect predictions, beat the best possible classical guarantee (consistency). Moreover, they degrade gracefully along with the increase in error (smoothness), but always within a constant factor of the best known competitive ratio in the classical case (robustness). Having reduced the problem to designing suitable efficient oracles, we describe how to achieve this for general metric spaces as well as specific metric spaces (rings, trees and flowers), the resulting algorithms being tractable in the latter case. The consistency guarantees of our algorithms are tight in almost all cases, and their smoothness guarantees only suffer a linear dependency on the error, which we show is necessary. Finally, we provide robustness guarantees improving previous results.

Cite as

Evripidis Bampis, Bruno Escoffier, Themis Gouleakis, Niklas Hahn, Kostas Lakis, Golnoosh Shahkarami, and Michalis Xefteris. Learning-Augmented Online TSP on Rings, Trees, Flowers and (Almost) Everywhere Else. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bampis_et_al:LIPIcs.ESA.2023.12,
  author =	{Bampis, Evripidis and Escoffier, Bruno and Gouleakis, Themis and Hahn, Niklas and Lakis, Kostas and Shahkarami, Golnoosh and Xefteris, Michalis},
  title =	{{Learning-Augmented Online TSP on Rings, Trees, Flowers and (Almost) Everywhere Else}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.12},
  URN =		{urn:nbn:de:0030-drops-186659},
  doi =		{10.4230/LIPIcs.ESA.2023.12},
  annote =	{Keywords: TSP, Online algorithms, Learning-augmented algorithms, Algorithms with predictions, Competitive analysis}
}
Document
A Novel Prediction Setup for Online Speed-Scaling

Authors: Antonios Antoniadis, Peyman Jabbarzade, and Golnoosh Shahkarami

Published in: LIPIcs, Volume 227, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)


Abstract
Given the rapid rise in energy demand by data centers and computing systems in general, it is fundamental to incorporate energy considerations when designing (scheduling) algorithms. Machine learning can be a useful approach in practice by predicting the future load of the system based on, for example, historical data. However, the effectiveness of such an approach highly depends on the quality of the predictions and can be quite far from optimal when predictions are sub-par. On the other hand, while providing a worst-case guarantee, classical online algorithms can be pessimistic for large classes of inputs arising in practice. This paper, in the spirit of the new area of machine learning augmented algorithms, attempts to obtain the best of both worlds for the classical, deadline based, online speed-scaling problem: Based on the introduction of a novel prediction setup, we develop algorithms that (i) obtain provably low energy-consumption in the presence of adequate predictions, and (ii) are robust against inadequate predictions, and (iii) are smooth, i.e., their performance gradually degrades as the prediction error increases.

Cite as

Antonios Antoniadis, Peyman Jabbarzade, and Golnoosh Shahkarami. A Novel Prediction Setup for Online Speed-Scaling. In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 9:1-9:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{antoniadis_et_al:LIPIcs.SWAT.2022.9,
  author =	{Antoniadis, Antonios and Jabbarzade, Peyman and Shahkarami, Golnoosh},
  title =	{{A Novel Prediction Setup for Online Speed-Scaling}},
  booktitle =	{18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)},
  pages =	{9:1--9:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-236-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{227},
  editor =	{Czumaj, Artur and Xin, Qin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.9},
  URN =		{urn:nbn:de:0030-drops-161693},
  doi =		{10.4230/LIPIcs.SWAT.2022.9},
  annote =	{Keywords: learning augmented algorithms, speed-scaling, energy-efficiency, scheduling theory, online algorithms}
}
Document
Complexity of Computing the Anti-Ramsey Numbers for Paths

Authors: Saeed Akhoondian Amiri, Alexandru Popa, Mohammad Roghani, Golnoosh Shahkarami, Reza Soltani, and Hossein Vahidi

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
The anti-Ramsey numbers are a fundamental notion in graph theory, introduced in 1978, by Erdös, Simonovits and Sós. For given graphs G and H the anti-Ramsey number ar(G,H) is defined to be the maximum number k such that there exists an assignment of k colors to the edges of G in which every copy of H in G has at least two edges with the same color. Usually, combinatorists study extremal values of anti-Ramsey numbers for various classes of graphs. There are works on the computational complexity of the problem when H is a star. Along this line of research, we study the complexity of computing the anti-Ramsey number ar(G,P_k), where P_k is a path of length k. First, we observe that when k is close to n, the problem is hard; hence, the challenging part is the computational complexity of the problem when k is a fixed constant. We provide a characterization of the problem for paths of constant length. Our first main contribution is to prove that computing ar(G,P_k) for every integer k > 2 is NP-hard. We obtain this by providing several structural properties of such coloring in graphs. We investigate further and show that approximating ar(G,P₃) to a factor of n^{-1/2 - ε} is hard already in 3-partite graphs, unless P = NP. We also study the exact complexity of the precolored version and show that there is no subexponential algorithm for the problem unless ETH fails for any fixed constant k. Given the hardness of approximation and parametrization of the problem, it is natural to study the problem on restricted graph families. Along this line, we first introduce the notion of color connected coloring, and, employing this structural property, we obtain a linear time algorithm to compute ar(G,P_k), for every integer k, when the host graph, G, is a tree.

Cite as

Saeed Akhoondian Amiri, Alexandru Popa, Mohammad Roghani, Golnoosh Shahkarami, Reza Soltani, and Hossein Vahidi. Complexity of Computing the Anti-Ramsey Numbers for Paths. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 6:1-6:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{akhoondianamiri_et_al:LIPIcs.MFCS.2020.6,
  author =	{Akhoondian Amiri, Saeed and Popa, Alexandru and Roghani, Mohammad and Shahkarami, Golnoosh and Soltani, Reza and Vahidi, Hossein},
  title =	{{Complexity of Computing the Anti-Ramsey Numbers for Paths}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{6:1--6:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.6},
  URN =		{urn:nbn:de:0030-drops-126781},
  doi =		{10.4230/LIPIcs.MFCS.2020.6},
  annote =	{Keywords: Coloring, Anti-Ramsey, Approximation, NP-hard, Algorithm, ETH}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail