Search Results

Documents authored by Shida, Yuto


Document
Finding Diverse Strings and Longest Common Subsequences in a Graph

Authors: Yuto Shida, Giulia Punzi, Yasuaki Kobayashi, Takeaki Uno, and Hiroki Arimura

Published in: LIPIcs, Volume 296, 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)


Abstract
In this paper, we study for the first time the Diverse Longest Common Subsequences (LCSs) problem under Hamming distance. Given a set of a constant number of input strings, the problem asks to decide if there exists some subset X of K longest common subsequences whose diversity is no less than a specified threshold Δ, where we consider two types of diversities of a set X of strings of equal length: the Sum diversity and the Min diversity defined as the sum and the minimum of the pairwise Hamming distance between any two strings in X, respectively. We analyze the computational complexity of the respective problems with Sum- and Min-diversity measures, called the Max-Sum and Max-Min Diverse LCSs, respectively, considering both approximation algorithms and parameterized complexity. Our results are summarized as follows. When K is bounded, both problems are polynomial time solvable. In contrast, when K is unbounded, both problems become NP-hard, while Max-Sum Diverse LCSs problem admits a PTAS. Furthermore, we analyze the parameterized complexity of both problems with combinations of parameters K and r, where r is the length of the candidate strings to be selected. Importantly, all positive results above are proven in a more general setting, where an input is an edge-labeled directed acyclic graph (DAG) that succinctly represents a set of strings of the same length. Negative results are proven in the setting where an input is explicitly given as a set of strings. The latter results are equipped with an encoding such a set as the longest common subsequences of a specific input string set.

Cite as

Yuto Shida, Giulia Punzi, Yasuaki Kobayashi, Takeaki Uno, and Hiroki Arimura. Finding Diverse Strings and Longest Common Subsequences in a Graph. In 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 296, pp. 27:1-27:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{shida_et_al:LIPIcs.CPM.2024.27,
  author =	{Shida, Yuto and Punzi, Giulia and Kobayashi, Yasuaki and Uno, Takeaki and Arimura, Hiroki},
  title =	{{Finding Diverse Strings and Longest Common Subsequences in a Graph}},
  booktitle =	{35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)},
  pages =	{27:1--27:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-326-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{296},
  editor =	{Inenaga, Shunsuke and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2024.27},
  URN =		{urn:nbn:de:0030-drops-201370},
  doi =		{10.4230/LIPIcs.CPM.2024.27},
  annote =	{Keywords: Sequence analysis, longest common subsequence, Hamming distance, dispersion, approximation algorithms, parameterized complexity}
}