Search Results

Documents authored by Tatlock, Zachary


Document
Artifact
Verified Compilation and Optimization of Floating-Point Programs in CakeML (Artifact)

Authors: Heiko Becker, Robert Rabe, Eva Darulova, Magnus O. Myreen, Zachary Tatlock, Ramana Kumar, Yong Kiam Tan, and Anthony Fox

Published in: DARTS, Volume 8, Issue 2, Special Issue of the 36th European Conference on Object-Oriented Programming (ECOOP 2022)


Abstract
Verified compilers such as CompCert and CakeML have become increasingly realistic over the last few years, but their support for floating-point arithmetic has thus far been limited. In particular, they lack the "fast-math-style" optimizations that unverified mainstream compilers perform. Supporting such optimizations in the setting of verified compilers is challenging because these optimizations, for the most part, do not preserve the IEEE-754 floating-point semantics. However, IEEE-754 floating-point numbers are finite approximations of the real numbers, and we argue that any compiler correctness result for fast-math optimizations should appeal to a real-valued semantics rather than the rigid IEEE-754 floating-point numbers. This document describes the artifact for RealCake, an extension of CakeML that achieves end-to-end correctness results for fast-math-style optimized compilation of floating-point arithmetic. This result is achieved by giving CakeML a flexible floating-point semantics and integrating an external proof-producing accuracy analysis. RealCake’s end-to-end theorems relate the I/O behavior of the original source program under real-number semantics to the observable I/O behavior of the compiler generated and fast-math-optimized machine code.

Cite as

Heiko Becker, Robert Rabe, Eva Darulova, Magnus O. Myreen, Zachary Tatlock, Ramana Kumar, Yong Kiam Tan, and Anthony Fox. Verified Compilation and Optimization of Floating-Point Programs in CakeML (Artifact). In Special Issue of the 36th European Conference on Object-Oriented Programming (ECOOP 2022). Dagstuhl Artifacts Series (DARTS), Volume 8, Issue 2, pp. 10:1-10:2, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{becker_et_al:DARTS.8.2.10,
  author =	{Becker, Heiko and Rabe, Robert and Darulova, Eva and Myreen, Magnus O. and Tatlock, Zachary and Kumar, Ramana and Tan, Yong Kiam and Fox, Anthony},
  title =	{{Verified Compilation and Optimization of Floating-Point Programs in CakeML (Artifact)}},
  pages =	{10:1--10:2},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2022},
  volume =	{8},
  number =	{2},
  editor =	{Becker, Heiko and Rabe, Robert and Darulova, Eva and Myreen, Magnus O. and Tatlock, Zachary and Kumar, Ramana and Tan, Yong Kiam and Fox, Anthony},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.8.2.10},
  URN =		{urn:nbn:de:0030-drops-162086},
  doi =		{10.4230/DARTS.8.2.10},
  annote =	{Keywords: compiler verification, compiler optimization, floating-point arithmetic}
}
Document
Verified Compilation and Optimization of Floating-Point Programs in CakeML

Authors: Heiko Becker, Robert Rabe, Eva Darulova, Magnus O. Myreen, Zachary Tatlock, Ramana Kumar, Yong Kiam Tan, and Anthony Fox

Published in: LIPIcs, Volume 222, 36th European Conference on Object-Oriented Programming (ECOOP 2022)


Abstract
Verified compilers such as CompCert and CakeML have become increasingly realistic over the last few years, but their support for floating-point arithmetic has thus far been limited. In particular, they lack the "fast-math-style" optimizations that unverified mainstream compilers perform. Supporting such optimizations in the setting of verified compilers is challenging because these optimizations, for the most part, do not preserve the IEEE-754 floating-point semantics. However, IEEE-754 floating-point numbers are finite approximations of the real numbers, and we argue that any compiler correctness result for fast-math optimizations should appeal to a real-valued semantics rather than the rigid IEEE-754 floating-point numbers. This paper presents RealCake, an extension of CakeML that achieves end-to-end correctness results for fast-math-style optimized compilation of floating-point arithmetic. This result is achieved by giving CakeML a flexible floating-point semantics and integrating an external proof-producing accuracy analysis. RealCake’s end-to-end theorems relate the I/O behavior of the original source program under real-number semantics to the observable I/O behavior of the compiler generated and fast-math-optimized machine code.

Cite as

Heiko Becker, Robert Rabe, Eva Darulova, Magnus O. Myreen, Zachary Tatlock, Ramana Kumar, Yong Kiam Tan, and Anthony Fox. Verified Compilation and Optimization of Floating-Point Programs in CakeML. In 36th European Conference on Object-Oriented Programming (ECOOP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 222, pp. 1:1-1:28, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{becker_et_al:LIPIcs.ECOOP.2022.1,
  author =	{Becker, Heiko and Rabe, Robert and Darulova, Eva and Myreen, Magnus O. and Tatlock, Zachary and Kumar, Ramana and Tan, Yong Kiam and Fox, Anthony},
  title =	{{Verified Compilation and Optimization of Floating-Point Programs in CakeML}},
  booktitle =	{36th European Conference on Object-Oriented Programming (ECOOP 2022)},
  pages =	{1:1--1:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-225-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{222},
  editor =	{Ali, Karim and Vitek, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2022.1},
  URN =		{urn:nbn:de:0030-drops-162290},
  doi =		{10.4230/LIPIcs.ECOOP.2022.1},
  annote =	{Keywords: compiler verification, compiler optimization, floating-point arithmetic}
}
Document
Programming Language Tools and Techniques for 3D Printing

Authors: Chandrakana Nandi, Anat Caspi, Dan Grossman, and Zachary Tatlock

Published in: LIPIcs, Volume 71, 2nd Summit on Advances in Programming Languages (SNAPL 2017)


Abstract
We propose a research agenda to investigate programming language techniques for improving affordable, end-user desktop manufacturing processes such as 3D printing. Our goal is to adapt programming languages tools and extend the decades of research in industrial, high-end CAD/CAM in order to help make affordable desktop manufacturing processes more accurate, fast, reliable, and accessible to end-users. We focus on three major areas where 3D printing can benefit from programming language tools: design synthesis, optimizing compilation, and runtime monitoring. We present preliminary results on synthesizing editable CAD models from difficult-to-edit surface meshes, discuss potential new compilation strategies, and propose runtime monitoring techniques. We conclude by discussing additional near-future directions we intend to pursue.

Cite as

Chandrakana Nandi, Anat Caspi, Dan Grossman, and Zachary Tatlock. Programming Language Tools and Techniques for 3D Printing. In 2nd Summit on Advances in Programming Languages (SNAPL 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 71, pp. 10:1-10:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{nandi_et_al:LIPIcs.SNAPL.2017.10,
  author =	{Nandi, Chandrakana and Caspi, Anat and Grossman, Dan and Tatlock, Zachary},
  title =	{{Programming Language Tools and Techniques for 3D Printing}},
  booktitle =	{2nd Summit on Advances in Programming Languages (SNAPL 2017)},
  pages =	{10:1--10:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-032-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{71},
  editor =	{Lerner, Benjamin S. and Bod{\'\i}k, Rastislav and Krishnamurthi, Shriram},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2017.10},
  URN =		{urn:nbn:de:0030-drops-71226},
  doi =		{10.4230/LIPIcs.SNAPL.2017.10},
  annote =	{Keywords: 3D printing, rapid prototyping, desktop manufacturing, compilers, verification, synthesis}
}
Document
Programming Language Abstractions for Modularly Verified Distributed Systems

Authors: James R. Wilcox, Ilya Sergey, and Zachary Tatlock

Published in: LIPIcs, Volume 71, 2nd Summit on Advances in Programming Languages (SNAPL 2017)


Abstract
Distributed systems are rarely developed as monolithic programs. Instead, like any software, these systems may consist of multiple program components, which are then compiled separately and linked together. Modern systems also incorporate various services interacting with each other and with client applications. However, state-of-the-art verification tools focus predominantly on verifying standalone, closed-world protocols or systems, thus failing to account for the compositional nature of distributed systems. For example, standalone verification has the drawback that when protocols and their optimized implementations evolve, one must re-verify the entire system from scratch, instead of leveraging compositionality to contain the reverification effort. In this paper, we focus on the challenge of modular verification of distributed systems with respect to high-level protocol invariants as well as for low-level implementation safety properties. We argue that the missing link between the two is a programming paradigm that would allow one to reason about both high-level distributed protocols and low-level implementation primitives in a single verification-friendly framework. Such a link would make it possible to reap the benefits from both the vast body of research in distributed computing, focused on modular protocol decomposition and consistency properties, as well as from the recent advances in program verification, enabling construction of provably correct systems implementations. To showcase the modular verification challenges, we present some typical scenarios of decomposition between a distributed protocol and its implementations. We then describe our ongoing research agenda, in which we are attempting to address the outlined problems by providing a typing discipline and a set of domain-specific primitives for specifying, implementing and verifying distributed systems. Our approach, mechanized within a proof assistant, provides the means of decomposition necessary for modular proofs about distributed protocols and systems.

Cite as

James R. Wilcox, Ilya Sergey, and Zachary Tatlock. Programming Language Abstractions for Modularly Verified Distributed Systems. In 2nd Summit on Advances in Programming Languages (SNAPL 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 71, pp. 19:1-19:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{wilcox_et_al:LIPIcs.SNAPL.2017.19,
  author =	{Wilcox, James R. and Sergey, Ilya and Tatlock, Zachary},
  title =	{{Programming Language Abstractions for Modularly Verified Distributed Systems}},
  booktitle =	{2nd Summit on Advances in Programming Languages (SNAPL 2017)},
  pages =	{19:1--19:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-032-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{71},
  editor =	{Lerner, Benjamin S. and Bod{\'\i}k, Rastislav and Krishnamurthi, Shriram},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2017.19},
  URN =		{urn:nbn:de:0030-drops-71266},
  doi =		{10.4230/LIPIcs.SNAPL.2017.19},
  annote =	{Keywords: Distributed systems, program verification, distributed protocols, domain-specific languages, type systems, dependent types, program logics.}
}
Document
Toward a Dependability Case Language and Workflow for a Radiation Therapy System

Authors: Michael D. Ernst, Dan Grossman, Jon Jacky, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina Torlak, and Xi Wang

Published in: LIPIcs, Volume 32, 1st Summit on Advances in Programming Languages (SNAPL 2015)


Abstract
We present a near-future research agenda for bringing a suite of modern programming-languages verification tools - specifically interactive theorem proving, solver-aided languages, and formally defined domain-specific languages - to the development of a specific safety-critical system, a radiotherapy medical device. We sketch how we believe recent programming-languages research advances can merge with existing best practices for safety-critical systems to increase system assurance and developer productivity. We motivate hypotheses central to our agenda: That we should start with a single specific system and that we need to integrate a variety of complementary verification and synthesis tools into system development.

Cite as

Michael D. Ernst, Dan Grossman, Jon Jacky, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina Torlak, and Xi Wang. Toward a Dependability Case Language and Workflow for a Radiation Therapy System. In 1st Summit on Advances in Programming Languages (SNAPL 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 32, pp. 103-112, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{ernst_et_al:LIPIcs.SNAPL.2015.103,
  author =	{Ernst, Michael D. and Grossman, Dan and Jacky, Jon and Loncaric, Calvin and Pernsteiner, Stuart and Tatlock, Zachary and Torlak, Emina and Wang, Xi},
  title =	{{Toward a Dependability Case Language and Workflow for a Radiation Therapy System}},
  booktitle =	{1st Summit on Advances in Programming Languages (SNAPL 2015)},
  pages =	{103--112},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-80-4},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{32},
  editor =	{Ball, Thomas and Bodík, Rastislav and Krishnamurthi, Shriram and Lerner, Benjamin S. and Morriset, Greg},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2015.103},
  URN =		{urn:nbn:de:0030-drops-50208},
  doi =		{10.4230/LIPIcs.SNAPL.2015.103},
  annote =	{Keywords: Synthesis, Proof Assistants, Verification, Dependability Cases, Domain Specific Languages, Radiation Therapy}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail