Search Results

Documents authored by Tkadlec, Josef

Long Plane Trees

Authors: Sergio Cabello, Michael Hoffmann, Katharina Klost, Wolfgang Mulzer, and Josef Tkadlec

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)

In the longest plane spanning tree problem, we are given a finite planar point set 𝒫, and our task is to find a plane (i.e., noncrossing) spanning tree T_OPT for 𝒫 with maximum total Euclidean edge length |T_OPT|. Despite more than two decades of research, it remains open if this problem is NP-hard. Thus, previous efforts have focused on polynomial-time algorithms that produce plane trees whose total edge length approximates |T_OPT|. The approximate trees in these algorithms all have small unweighted diameter, typically three or four. It is natural to ask whether this is a common feature of longest plane spanning trees, or an artifact of the specific approximation algorithms. We provide three results to elucidate the interplay between the approximation guarantee and the unweighted diameter of the approximate trees. First, we describe a polynomial-time algorithm to construct a plane tree T_ALG with diameter at most four and |T_ALG| ≥ 0.546 ⋅ |T_OPT|. This constitutes a substantial improvement over the state of the art. Second, we show that a longest plane tree among those with diameter at most three can be found in polynomial time. Third, for any candidate diameter d ≥ 3, we provide upper bounds on the approximation factor that can be achieved by a longest plane tree with diameter at most d (compared to a longest plane tree without constraints).

Cite as

Sergio Cabello, Michael Hoffmann, Katharina Klost, Wolfgang Mulzer, and Josef Tkadlec. Long Plane Trees. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 23:1-23:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

  author =	{Cabello, Sergio and Hoffmann, Michael and Klost, Katharina and Mulzer, Wolfgang and Tkadlec, Josef},
  title =	{{Long Plane Trees}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{23:1--23:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-160311},
  doi =		{10.4230/LIPIcs.SoCG.2022.23},
  annote =	{Keywords: geometric network design, spanning trees, plane straight-line graphs, approximation algorithms}
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail