Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)
Arnoud van der Leer, Kobe Wullaert, and Benedikt Ahrens. Scott’s Representation Theorem and the Univalent Karoubi Envelope. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 33:1-33:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{vanderleer_et_al:LIPIcs.ITP.2025.33, author = {van der Leer, Arnoud and Wullaert, Kobe and Ahrens, Benedikt}, title = {{Scott’s Representation Theorem and the Univalent Karoubi Envelope}}, booktitle = {16th International Conference on Interactive Theorem Proving (ITP 2025)}, pages = {33:1--33:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-396-6}, ISSN = {1868-8969}, year = {2025}, volume = {352}, editor = {Forster, Yannick and Keller, Chantal}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.33}, URN = {urn:nbn:de:0030-drops-246318}, doi = {10.4230/LIPIcs.ITP.2025.33}, annote = {Keywords: Lambda calculi, algebraic theories, categorical semantics, Karoubi envelope, formalization, Rocq-UniMath, univalent foundations} }
Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)
Ralph Matthes, Kobe Wullaert, and Benedikt Ahrens. Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 25:1-25:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{matthes_et_al:LIPIcs.FSCD.2024.25, author = {Matthes, Ralph and Wullaert, Kobe and Ahrens, Benedikt}, title = {{Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories}}, booktitle = {9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)}, pages = {25:1--25:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-323-2}, ISSN = {1868-8969}, year = {2024}, volume = {299}, editor = {Rehof, Jakob}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.25}, URN = {urn:nbn:de:0030-drops-203540}, doi = {10.4230/LIPIcs.FSCD.2024.25}, annote = {Keywords: Non-wellfounded syntax, Substitution, Monoidal categories, Actegories, Tensorial strength, Proof assistant Coq, UniMath library} }
Published in: LIPIcs, Volume 269, 28th International Conference on Types for Proofs and Programs (TYPES 2022)
Kobe Wullaert, Ralph Matthes, and Benedikt Ahrens. Univalent Monoidal Categories. In 28th International Conference on Types for Proofs and Programs (TYPES 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 269, pp. 15:1-15:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{wullaert_et_al:LIPIcs.TYPES.2022.15, author = {Wullaert, Kobe and Matthes, Ralph and Ahrens, Benedikt}, title = {{Univalent Monoidal Categories}}, booktitle = {28th International Conference on Types for Proofs and Programs (TYPES 2022)}, pages = {15:1--15:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-285-3}, ISSN = {1868-8969}, year = {2023}, volume = {269}, editor = {Kesner, Delia and P\'{e}drot, Pierre-Marie}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2022.15}, URN = {urn:nbn:de:0030-drops-184580}, doi = {10.4230/LIPIcs.TYPES.2022.15}, annote = {Keywords: Univalence, Monoidal categories, Rezk completion, Displayed (bi)categories, Proof assistant Coq, UniMath library} }