12 Search Results for "Anderson, Matthew"


Document
Media Exposition
An Interactive Tool for Experimenting with Bounded-Degree Plane Geometric Spanners (Media Exposition)

Authors: Fred Anderson, Anirban Ghosh, Matthew Graham, Lucas Mougeot, and David Wisnosky

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
The construction of bounded-degree plane geometric spanners has been a focus of interest in the field of geometric spanners for a long time. To date, several algorithms have been designed with various trade-offs in degree and stretch factor. Using JSXGraph, a state-of-the-art JavaScript library for geometry, we have implemented seven of these sophisticated algorithms so that they can be used for further research and teaching computational geometry. We believe that our interactive tool can be used by researchers from related fields to understand and apply the algorithms in their research. Our tool can be run in any modern browser. The tool will be permanently maintained by the second author at https://ghoshanirban.github.io/bounded-degree-plane-spanners/index.html

Cite as

Fred Anderson, Anirban Ghosh, Matthew Graham, Lucas Mougeot, and David Wisnosky. An Interactive Tool for Experimenting with Bounded-Degree Plane Geometric Spanners (Media Exposition). In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 61:1-61:4, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{anderson_et_al:LIPIcs.SoCG.2021.61,
  author =	{Anderson, Fred and Ghosh, Anirban and Graham, Matthew and Mougeot, Lucas and Wisnosky, David},
  title =	{{An Interactive Tool for Experimenting with Bounded-Degree Plane Geometric Spanners}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{61:1--61:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.61},
  URN =		{urn:nbn:de:0030-drops-138607},
  doi =		{10.4230/LIPIcs.SoCG.2021.61},
  annote =	{Keywords: graph approximation, Delaunay triangulations, geometric spanners, plane spanners, bounded-degree spanners}
}
Document
Consensus Clusters in Robinson-Foulds Reticulation Networks

Authors: Alexey Markin and Oliver Eulenstein

Published in: LIPIcs, Volume 143, 19th International Workshop on Algorithms in Bioinformatics (WABI 2019)


Abstract
Inference of phylogenetic networks - the evolutionary histories of species involving speciation as well as reticulation events - has proved to be an extremely challenging problem even for smaller datasets easily tackled by supertree inference methods. An effective way to boost the scalability of distance-based supertree methods originates from the Pareto (for clusters) property, which is a highly desirable property for phylogenetic consensus methods. In particular, one can employ strict consensus merger algorithms to boost the scalability and accuracy of supertree methods satisfying Pareto; cf. SuperFine. In this work, we establish a Pareto-like property for phylogenetic networks. Then we consider the recently introduced RF-Net method that heuristically solves the so-called RF-Network problem and which was demonstrated to be an efficient and effective tool for the inference of hybridization and reassortment networks. As our main result, we provide a constructive proof (entailing an explicit refinement algorithm) that the Pareto property applies to the RF-Network problem when the solution space is restricted to the popular class of tree-child networks. This result implies that strict consensus merger strategies, similar to SuperFine, can be directly applied to boost both accuracy and scalability of RF-Net significantly. Finally, we further investigate the optimum solutions to the RF-Network problem; in particular, we describe structural properties of all optimum (tree-child) RF-networks in relation to strict consensus clusters of the input trees.

Cite as

Alexey Markin and Oliver Eulenstein. Consensus Clusters in Robinson-Foulds Reticulation Networks. In 19th International Workshop on Algorithms in Bioinformatics (WABI 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 143, pp. 12:1-12:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{markin_et_al:LIPIcs.WABI.2019.12,
  author =	{Markin, Alexey and Eulenstein, Oliver},
  title =	{{Consensus Clusters in Robinson-Foulds Reticulation Networks}},
  booktitle =	{19th International Workshop on Algorithms in Bioinformatics (WABI 2019)},
  pages =	{12:1--12:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-123-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{143},
  editor =	{Huber, Katharina T. and Gusfield, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2019.12},
  URN =		{urn:nbn:de:0030-drops-110420},
  doi =		{10.4230/LIPIcs.WABI.2019.12},
  annote =	{Keywords: Phylogenetics, phylogenetic tree, phylogenetic network, reticulation network, Robinson-Foulds, Pareto, RF-Net}
}
Document
Kleene Algebra with Observations

Authors: Tobias Kappé, Paul Brunet, Jurriaan Rot, Alexandra Silva, Jana Wagemaker, and Fabio Zanasi

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
Kleene algebra with tests (KAT) is an algebraic framework for reasoning about the control flow of sequential programs. Generalising KAT to reason about concurrent programs is not straightforward, because axioms native to KAT in conjunction with expected axioms for concurrency lead to an anomalous equation. In this paper, we propose Kleene algebra with observations (KAO), a variant of KAT, as an alternative foundation for extending KAT to a concurrent setting. We characterise the free model of KAO, and establish a decision procedure w.r.t. its equational theory.

Cite as

Tobias Kappé, Paul Brunet, Jurriaan Rot, Alexandra Silva, Jana Wagemaker, and Fabio Zanasi. Kleene Algebra with Observations. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 41:1-41:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{kappe_et_al:LIPIcs.CONCUR.2019.41,
  author =	{Kapp\'{e}, Tobias and Brunet, Paul and Rot, Jurriaan and Silva, Alexandra and Wagemaker, Jana and Zanasi, Fabio},
  title =	{{Kleene Algebra with Observations}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{41:1--41:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.41},
  URN =		{urn:nbn:de:0030-drops-109431},
  doi =		{10.4230/LIPIcs.CONCUR.2019.41},
  annote =	{Keywords: Concurrent Kleene algebra, Kleene algebra with tests, free model, axiomatisation, decision procedure}
}
Document
Lower Bounds for Multilinear Order-Restricted ABPs

Authors: C. Ramya and B. V. Raghavendra Rao

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
Proving super-polynomial lower bounds on the size of syntactic multilinear Algebraic Branching Programs (smABPs) computing an explicit polynomial is a challenging problem in Algebraic Complexity Theory. The order in which variables in {x_1,...,x_n} appear along any source to sink path in an smABP can be viewed as a permutation in S_n. In this article, we consider the following special classes of smABPs where the order of occurrence of variables along a source to sink path is restricted: 1) Strict circular-interval ABPs: For every sub-program the index set of variables occurring in it is contained in some circular interval of {1,..., n}. 2) L-ordered ABPs: There is a set of L permutations (orders) of variables such that every source to sink path in the smABP reads variables in one of these L orders, where L <=2^{n^{1/2 -epsilon}} for some epsilon>0. We prove exponential (i.e., 2^{Omega(n^delta)}, delta>0) lower bounds on the size of above models computing an explicit multilinear 2n-variate polynomial in VP. As a main ingredient in our lower bounds, we show that any polynomial that can be computed by an smABP of size S, can be written as a sum of O(S) many multilinear polynomials where each summand is a product of two polynomials in at most 2n/3 variables, computable by smABPs. As a corollary, we show that any size S syntactic multilinear ABP can be transformed into a size S^{O(sqrt{n})} depth four syntactic multilinear Sigma Pi Sigma Pi circuit where the bottom Sigma gates compute polynomials on at most O(sqrt{n}) variables. Finally, we compare the above models with other standard models for computing multilinear polynomials.

Cite as

C. Ramya and B. V. Raghavendra Rao. Lower Bounds for Multilinear Order-Restricted ABPs. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 52:1-52:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{ramya_et_al:LIPIcs.MFCS.2019.52,
  author =	{Ramya, C. and Rao, B. V. Raghavendra},
  title =	{{Lower Bounds for Multilinear Order-Restricted ABPs}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{52:1--52:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.52},
  URN =		{urn:nbn:de:0030-drops-109963},
  doi =		{10.4230/LIPIcs.MFCS.2019.52},
  annote =	{Keywords: Computational complexity, Algebraic complexity theory, Polynomials}
}
Document
Identity Testing and Lower Bounds for Read-k Oblivious Algebraic Branching Programs

Authors: Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, and Ben Lee Volk

Published in: LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)


Abstract
Read-k oblivious algebraic branching programs are a natural generalization of the well-studied model of read-once oblivious algebraic branching program (ROABPs). In this work, we give an exponential lower bound of exp(n/k^{O(k)}) on the width of any read-k oblivious ABP computing some explicit multilinear polynomial f that is computed by a polynomial size depth-3 circuit. We also study the polynomial identity testing (PIT) problem for this model and obtain a white-box subexponential-time PIT algorithm. The algorithm runs in time 2^{~O(n^{1-1/2^{k-1}})} and needs white box access only to know the order in which the variables appear in the ABP.

Cite as

Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, and Ben Lee Volk. Identity Testing and Lower Bounds for Read-k Oblivious Algebraic Branching Programs. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 30:1-30:25, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{anderson_et_al:LIPIcs.CCC.2016.30,
  author =	{Anderson, Matthew and Forbes, Michael A. and Saptharishi, Ramprasad and Shpilka, Amir and Volk, Ben Lee},
  title =	{{Identity Testing and Lower Bounds for Read-k Oblivious Algebraic Branching Programs}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{30:1--30:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Raz, Ran},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.30},
  URN =		{urn:nbn:de:0030-drops-58255},
  doi =		{10.4230/LIPIcs.CCC.2016.30},
  annote =	{Keywords: Algebraic Complexity, Lower Bounds, Derandomization, Polynomial Identity Testing}
}
Document
Invited Paper
Applications of Automata and Concurrency Theory in Networks (Invited Paper)

Authors: Alexandra Silva

Published in: LIPIcs, Volume 42, 26th International Conference on Concurrency Theory (CONCUR 2015)


Abstract
Networks have received widespread attention in recent years as a target for domain-specific language design. The emergence of software-defined networking (SDN) as a popular paradigm for network programming has led to the appearance of a number of SDN programming languages seeking to provide high-level abstractions to simplify the task of specifying the packet-processing behavior of a network. Previous work by Anderson et al. [Anderson et al.,POPL'14,2014] introduced NetKAT, a language and logic for specifying and verifying the packet-processing behavior of networks. NetKAT provides general-purpose programming constructs such as parallel and sequential composition, conditional tests, and iteration, as well as special-purpose primitives for querying and modifying packet headers and encoding network topologies. In contrast to competing approaches, NetKAT has a formal mathematical semantics and an equational deductive system that is sound and complete over that semantics, as well as a PSPACE decision procedure. It is based on Kleene algebra with tests (KAT), an algebraic system for propositional program verification that has been extensively studied for nearly two decades [Kozen,ACM Trans. Program. Lang. Syst.,1997]. Several practical applications of NetKAT have been developed, including algorithms for testing reachability and non-interference and a syntactic correctness proof for a compiler that translates programs to hardware instructions for SDN switches. In a follow-up paper [Foster et al.,POPL'15,2015], the coalgebraic theory of NetKAT was developed and a bisimulation-based algorithm for deciding equivalence was devised. The new algorithm was shown to be significantly more efficient than the previous naive algorithm [Anderson et al.,POPL'14,2014], which was PSPACE in the best case and the worst case, as it was based on the determinization of a nondeterministic algorithm. Along with the coalgebraic model of NetKAT, the authors presented a specialized version of the Brzozowski derivative in both semantic and syntactic forms. They also also proved a version of Kleene's theorem for NetKAT that shows that the coalgebraic model is equivalent to the standard packet-processing and language models introduced previously [Anderson et al.,POPL'14,2014]. They demonstrated the real-world applicability of the tool by using it to decide common network verification questions such as all-pairs connectivity, loop-freedom, and translation validation - all pressing questions in modern networks. This talk will survey applications of automata theory, concurrency theory and coalgebra to problems in networking. We will suggest directions for exploring the bridge between the two communities and ways to deliver new synergies. On the one hand, this will lead to new insights and techniques that will enable the development of rigorous semantic foundations for networks. On the other hand, the idysiocransies of networks will provide new challenges for the automata and concurrency community.

Cite as

Alexandra Silva. Applications of Automata and Concurrency Theory in Networks (Invited Paper). In 26th International Conference on Concurrency Theory (CONCUR 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 42, pp. 42-43, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{silva:LIPIcs.CONCUR.2015.42,
  author =	{Silva, Alexandra},
  title =	{{Applications of Automata and Concurrency Theory in Networks}},
  booktitle =	{26th International Conference on Concurrency Theory (CONCUR 2015)},
  pages =	{42--43},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-91-0},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{42},
  editor =	{Aceto, Luca and de Frutos Escrig, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2015.42},
  URN =		{urn:nbn:de:0030-drops-53993},
  doi =		{10.4230/LIPIcs.CONCUR.2015.42},
  annote =	{Keywords: Automata, network programming, coalgebra}
}
Document
InterPoll: Crowd-Sourced Internet Polls

Authors: Benjamin Livshits and Todd Mytkowicz

Published in: LIPIcs, Volume 32, 1st Summit on Advances in Programming Languages (SNAPL 2015)


Abstract
Crowd-sourcing is increasingly being used to provide answers to online polls and surveys. However, existing systems, while taking care of the mechanics of attracting crowd workers, poll building, and payment, provide little to help the survey-maker or pollster in obtaining statistically significant results devoid of even the obvious selection biases. This paper proposes InterPoll, a platform for programming of crowd-sourced polls. Pollsters express polls as embedded LINQ queries and the runtime correctly reasons about uncertainty in those polls, only polling as many people as required to meet statistical guarantees. To optimize the cost of polls, InterPoll performs query optimization, as well as bias correction and power analysis. The goal of InterPoll is to provide a system that can be reliably used for research into marketing, social and political science questions. This paper highlights some of the existing challenges and how InterPoll is designed to address most of them. In this paper we summarize some of the work we have already done and give an outline for future work.

Cite as

Benjamin Livshits and Todd Mytkowicz. InterPoll: Crowd-Sourced Internet Polls. In 1st Summit on Advances in Programming Languages (SNAPL 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 32, pp. 156-176, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{livshits_et_al:LIPIcs.SNAPL.2015.156,
  author =	{Livshits, Benjamin and Mytkowicz, Todd},
  title =	{{InterPoll: Crowd-Sourced Internet Polls}},
  booktitle =	{1st Summit on Advances in Programming Languages (SNAPL 2015)},
  pages =	{156--176},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-80-4},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{32},
  editor =	{Ball, Thomas and Bodík, Rastislav and Krishnamurthi, Shriram and Lerner, Benjamin S. and Morriset, Greg},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2015.156},
  URN =		{urn:nbn:de:0030-drops-50242},
  doi =		{10.4230/LIPIcs.SNAPL.2015.156},
  annote =	{Keywords: CrowdSourcing, Polling, LINQ}
}
Document
Everything You Want to Know About Pointer-Based Checking

Authors: Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic

Published in: LIPIcs, Volume 32, 1st Summit on Advances in Programming Languages (SNAPL 2015)


Abstract
Lack of memory safety in C/C++ has resulted in numerous security vulnerabilities and serious bugs in large software systems. This paper highlights the challenges in enforcing memory safety for C/C++ programs and progress made as part of the SoftBoundCETS project. We have been exploring memory safety enforcement at various levels - in hardware, in the compiler, and as a hardware-compiler hybrid - in this project. Our research has identified that maintaining metadata with pointers in a disjoint metadata space and performing bounds and use-after-free checking can provide comprehensive memory safety. We describe the rationale behind the design decisions and its ramifications on various dimensions, our experience with the various variants that we explored in this project, and the lessons learned in the process. We also describe and analyze the forthcoming Intel Memory Protection Extensions (MPX) that provides hardware acceleration for disjoint metadata and pointer checking in mainstream hardware, which is expected to be available later this year.

Cite as

Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Everything You Want to Know About Pointer-Based Checking. In 1st Summit on Advances in Programming Languages (SNAPL 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 32, pp. 190-208, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{nagarakatte_et_al:LIPIcs.SNAPL.2015.190,
  author =	{Nagarakatte, Santosh and Martin, Milo M. K. and Zdancewic, Steve},
  title =	{{Everything You Want to Know About Pointer-Based Checking}},
  booktitle =	{1st Summit on Advances in Programming Languages (SNAPL 2015)},
  pages =	{190--208},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-80-4},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{32},
  editor =	{Ball, Thomas and Bodík, Rastislav and Krishnamurthi, Shriram and Lerner, Benjamin S. and Morriset, Greg},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2015.190},
  URN =		{urn:nbn:de:0030-drops-50268},
  doi =		{10.4230/LIPIcs.SNAPL.2015.190},
  annote =	{Keywords: Memory safety, Buffer overflows, Dangling pointers, Pointer-based checking, SoftBoundCETS}
}
Document
Coupling Memory and Computation for Locality Management

Authors: Umut A. Acar, Guy Blelloch, Matthew Fluet, Stefan K. Muller, and Ram Raghunathan

Published in: LIPIcs, Volume 32, 1st Summit on Advances in Programming Languages (SNAPL 2015)


Abstract
We articulate the need for managing (data) locality automatically rather than leaving it to the programmer, especially in parallel programming systems. To this end, we propose techniques for coupling tightly the computation (including the thread scheduler) and the memory manager so that data and computation can be positioned closely in hardware. Such tight coupling of computation and memory management is in sharp contrast with the prevailing practice of considering each in isolation. For example, memory-management techniques usually abstract the computation as an unknown "mutator", which is treated as a "black box". As an example of the approach, in this paper we consider a specific class of parallel computations, nested-parallel computations. Such computations dynamically create a nesting of parallel tasks. We propose a method for organizing memory as a tree of heaps reflecting the structure of the nesting. More specifically, our approach creates a heap for a task if it is separately scheduled on a processor. This allows us to couple garbage collection with the structure of the computation and the way in which it is dynamically scheduled on the processors. This coupling enables taking advantage of locality in the program by mapping it to the locality of the hardware. For example for improved locality a heap can be garbage collected immediately after its task finishes when the heap contents is likely in cache.

Cite as

Umut A. Acar, Guy Blelloch, Matthew Fluet, Stefan K. Muller, and Ram Raghunathan. Coupling Memory and Computation for Locality Management. In 1st Summit on Advances in Programming Languages (SNAPL 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 32, pp. 1-14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{acar_et_al:LIPIcs.SNAPL.2015.1,
  author =	{Acar, Umut A. and Blelloch, Guy and Fluet, Matthew and Muller, Stefan K. and Raghunathan, Ram},
  title =	{{Coupling Memory and Computation for Locality Management}},
  booktitle =	{1st Summit on Advances in Programming Languages (SNAPL 2015)},
  pages =	{1--14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-80-4},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{32},
  editor =	{Ball, Thomas and Bodík, Rastislav and Krishnamurthi, Shriram and Lerner, Benjamin S. and Morriset, Greg},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2015.1},
  URN =		{urn:nbn:de:0030-drops-50121},
  doi =		{10.4230/LIPIcs.SNAPL.2015.1},
  annote =	{Keywords: Parallel computing, locality, memory management, parallel garbage collection, functional programming, nested parallelism, thread scheduling}
}
Document
New Directions for Network Verification

Authors: Aurojit Panda, Katerina Argyraki, Mooly Sagiv, Michael Schapira, and Scott Shenker

Published in: LIPIcs, Volume 32, 1st Summit on Advances in Programming Languages (SNAPL 2015)


Abstract
Network verification has recently gained popularity in the programming languages and verification community. Much of the recent work in this area has focused on verifying the behavior of simple networks, whose actions are dictated by static, immutable rules configured ahead of time. However, in reality, modern networks contain a variety of middleboxes, whose behavior is affected both by their configuration and by mutable state updated in response to packets received by them. In this position paper we critically review recent progress on network verification, propose some next steps towards a more complete form of network verification, dispel some myths about networks, provide a more formal description of our approach, and end with a discussion of the formal questions posed to this community by the network verification agenda.

Cite as

Aurojit Panda, Katerina Argyraki, Mooly Sagiv, Michael Schapira, and Scott Shenker. New Directions for Network Verification. In 1st Summit on Advances in Programming Languages (SNAPL 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 32, pp. 209-220, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{panda_et_al:LIPIcs.SNAPL.2015.209,
  author =	{Panda, Aurojit and Argyraki, Katerina and Sagiv, Mooly and Schapira, Michael and Shenker, Scott},
  title =	{{New Directions for Network Verification}},
  booktitle =	{1st Summit on Advances in Programming Languages (SNAPL 2015)},
  pages =	{209--220},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-80-4},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{32},
  editor =	{Ball, Thomas and Bodík, Rastislav and Krishnamurthi, Shriram and Lerner, Benjamin S. and Morriset, Greg},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2015.209},
  URN =		{urn:nbn:de:0030-drops-50278},
  doi =		{10.4230/LIPIcs.SNAPL.2015.209},
  annote =	{Keywords: Middleboxes, Network Verification, Mutable Dataplane}
}
Document
Refined Criteria for Gradual Typing

Authors: Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland

Published in: LIPIcs, Volume 32, 1st Summit on Advances in Programming Languages (SNAPL 2015)


Abstract
Siek and Taha [2006] coined the term gradual typing to describe a theory for integrating static and dynamic typing within a single language that 1) puts the programmer in control of which regions of code are statically or dynamically typed and 2) enables the gradual evolution of code between the two typing disciplines. Since 2006, the term gradual typing has become quite popular but its meaning has become diluted to encompass anything related to the integration of static and dynamic typing. This dilution is partly the fault of the original paper, which provided an incomplete formal characterization of what it means to be gradually typed. In this paper we draw a crisp line in the sand that includes a new formal property, named the gradual guarantee, that relates the behavior of programs that differ only with respect to their type annotations. We argue that the gradual guarantee provides important guidance for designers of gradually typed languages. We survey the gradual typing literature, critiquing designs in light of the gradual guarantee. We also report on a mechanized proof that the gradual guarantee holds for the Gradually Typed Lambda Calculus.

Cite as

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. Refined Criteria for Gradual Typing. In 1st Summit on Advances in Programming Languages (SNAPL 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 32, pp. 274-293, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{siek_et_al:LIPIcs.SNAPL.2015.274,
  author =	{Siek, Jeremy G. and Vitousek, Michael M. and Cimini, Matteo and Boyland, John Tang},
  title =	{{Refined Criteria for Gradual Typing}},
  booktitle =	{1st Summit on Advances in Programming Languages (SNAPL 2015)},
  pages =	{274--293},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-80-4},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{32},
  editor =	{Ball, Thomas and Bodík, Rastislav and Krishnamurthi, Shriram and Lerner, Benjamin S. and Morriset, Greg},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2015.274},
  URN =		{urn:nbn:de:0030-drops-50312},
  doi =		{10.4230/LIPIcs.SNAPL.2015.274},
  annote =	{Keywords: gradual typing, type systems, semantics, dynamic languages}
}
Document
On Symmetric Circuits and Fixed-Point Logics

Authors: Matthew Anderson and Anuj Dawar

Published in: LIPIcs, Volume 25, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)


Abstract
We study properties of relational structures such as graphs that are decided by families of Boolean circuits. Circuits that decide such properties are necessarily invariant to permutations of the elements of the input structures. We focus on families of circuits that are symmetric, i.e., circuits whose invariance is witnessed by automorphisms of the circuit induced by the permutation of the input structure. We show that the expressive power of such families is closely tied to definability in logic. In particular, we show that the queries defined on structures by uniform families of symmetric Boolean circuits with majority gates are exactly those definable in fixed-point logic with counting. This shows that inexpressibility results in the latter logic lead to lower bounds against polynomial-size families of symmetric circuits.

Cite as

Matthew Anderson and Anuj Dawar. On Symmetric Circuits and Fixed-Point Logics. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 25, pp. 41-52, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{anderson_et_al:LIPIcs.STACS.2014.41,
  author =	{Anderson, Matthew and Dawar, Anuj},
  title =	{{On Symmetric Circuits and Fixed-Point Logics}},
  booktitle =	{31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)},
  pages =	{41--52},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-65-1},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{25},
  editor =	{Mayr, Ernst W. and Portier, Natacha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2014.41},
  URN =		{urn:nbn:de:0030-drops-44455},
  doi =		{10.4230/LIPIcs.STACS.2014.41},
  annote =	{Keywords: symmetric circuit, fixed-point logic, majority, counting, uniformity}
}
  • Refine by Author
  • 2 Anderson, Matthew
  • 2 Silva, Alexandra
  • 1 Acar, Umut A.
  • 1 Anderson, Fred
  • 1 Argyraki, Katerina
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Computational biology
  • 1 Mathematics of computing → Graph theory
  • 1 Theory of computation → Algebraic complexity theory
  • 1 Theory of computation → Circuit complexity
  • 1 Theory of computation → Formal languages and automata theory
  • Show More...

  • Refine by Keyword
  • 1 Algebraic Complexity
  • 1 Algebraic complexity theory
  • 1 Automata
  • 1 Buffer overflows
  • 1 Computational complexity
  • Show More...

  • Refine by Type
  • 12 document

  • Refine by Publication Year
  • 6 2015
  • 3 2019
  • 1 2014
  • 1 2016
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail