2 Search Results for "Annenkov, Danil"


Document
Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

Authors: Ambrus Kaposi and Szumi Xie

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Programming languages can be defined from the concrete to the abstract by abstract syntax trees, well-scoped syntax, well-typed (intrinsic) syntax, algebraic syntax (well-typed syntax quotiented by conversion). Another aspect is the representation of binding structure for which nominal approaches, De Bruijn indices/levels and higher order abstract syntax (HOAS) are available. In HOAS, binders are given by the function space of an internal language of presheaves. In this paper, we show how to combine the algebraic approach with the HOAS approach: following Uemura, we define languages as second-order generalised algebraic theories (SOGATs). Through a series of examples we show that non-substructural languages can be naturally defined as SOGATs. We give a formal definition of SOGAT signatures (using the syntax of a particular SOGAT) and define two translations from SOGAT signatures to GAT signatures (signatures for quotient inductive-inductive types), based on parallel and single substitutions, respectively.

Cite as

Ambrus Kaposi and Szumi Xie. Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kaposi_et_al:LIPIcs.FSCD.2024.10,
  author =	{Kaposi, Ambrus and Xie, Szumi},
  title =	{{Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{10:1--10:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.10},
  URN =		{urn:nbn:de:0030-drops-203396},
  doi =		{10.4230/LIPIcs.FSCD.2024.10},
  annote =	{Keywords: Type theory, universal algebra, inductive types, quotient inductive types, higher-order abstract syntax, logical framework}
}
Document
Finding Smart Contract Vulnerabilities with ConCert’s Property-Based Testing Framework

Authors: Mikkel Milo, Eske Hoy Nielsen, Danil Annenkov, and Bas Spitters

Published in: OASIcs, Volume 105, 4th International Workshop on Formal Methods for Blockchains (FMBC 2022)


Abstract
We provide three detailed case studies of vulnerabilities in smart contracts, and show how property based testing would have found them: 1. the Dexter1 token exchange; 2. the iToken; 3. the ICO of Brave’s BAT token. The last example is, in fact, new, and was missed in the auditing process. We have implemented this testing in ConCert, a general executable model/specification of smart contract execution in the Coq proof assistant. ConCert contracts can be used to generate verified smart contracts in Tezos' LIGO and Concordium’s rust language. We thus show the effectiveness of combining formal verification and property-based testing of smart contracts.

Cite as

Mikkel Milo, Eske Hoy Nielsen, Danil Annenkov, and Bas Spitters. Finding Smart Contract Vulnerabilities with ConCert’s Property-Based Testing Framework. In 4th International Workshop on Formal Methods for Blockchains (FMBC 2022). Open Access Series in Informatics (OASIcs), Volume 105, pp. 2:1-2:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{milo_et_al:OASIcs.FMBC.2022.2,
  author =	{Milo, Mikkel and Nielsen, Eske Hoy and Annenkov, Danil and Spitters, Bas},
  title =	{{Finding Smart Contract Vulnerabilities with ConCert’s Property-Based Testing Framework}},
  booktitle =	{4th International Workshop on Formal Methods for Blockchains (FMBC 2022)},
  pages =	{2:1--2:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-250-1},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{105},
  editor =	{Dargaye, Zaynah and Schneidewind, Clara},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.FMBC.2022.2},
  URN =		{urn:nbn:de:0030-drops-171834},
  doi =		{10.4230/OASIcs.FMBC.2022.2},
  annote =	{Keywords: Smart Contracts, Formal Verification, Property-Based Testing, Coq}
}
  • Refine by Author
  • 1 Annenkov, Danil
  • 1 Kaposi, Ambrus
  • 1 Milo, Mikkel
  • 1 Nielsen, Eske Hoy
  • 1 Spitters, Bas
  • Show More...

  • Refine by Classification
  • 1 Software and its engineering → Formal methods
  • 1 Software and its engineering → Software verification and validation
  • 1 Theory of computation → Type theory

  • Refine by Keyword
  • 1 Coq
  • 1 Formal Verification
  • 1 Property-Based Testing
  • 1 Smart Contracts
  • 1 Type theory
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2022
  • 1 2024