2 Search Results for "Berthold, Timo"


Document
Experimental Analysis of LP Scaling Methods Based on Circuit Imbalance Minimization

Authors: Jakub Komárek and Martin Koutecký

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Linear programming (LP) is a fundamental problem with rich theory and wide applications. A ubiquitous technique in LP is scaling, where the input instance is transformed in some way to make its solution easier. Dadush et al. [STOC '20] have recently devised an algorithm which scales the columns of the constraint matrix of a linear program in a way that aims to minimize the circuit imbalance measure, a matrix condition number of growing theoretical interest. They show that this rescaling achieves favorable theoretical guarantees for certain LP algorithms. We follow up on their work in an experimental manner. First, we have implemented their algorithm, overcoming several engineering obstacles. Next, we have used our implementation to obtain a rescaling of 142 publicly available instances. Finally, we have performed experiments evaluating the effects of the obtained rescalings on the runtime of real-world LP solvers, and we have evaluated their quality with regard to the circuit imbalance measure.

Cite as

Jakub Komárek and Martin Koutecký. Experimental Analysis of LP Scaling Methods Based on Circuit Imbalance Minimization. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 18:1-18:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{komarek_et_al:LIPIcs.SEA.2024.18,
  author =	{Kom\'{a}rek, Jakub and Kouteck\'{y}, Martin},
  title =	{{Experimental Analysis of LP Scaling Methods Based on Circuit Imbalance Minimization}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{18:1--18:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.18},
  URN =		{urn:nbn:de:0030-drops-203832},
  doi =		{10.4230/LIPIcs.SEA.2024.18},
  annote =	{Keywords: Linear programming, scaling, circuit imbalance measure}
}
Document
Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning

Authors: Gioni Mexi, Timo Berthold, Ambros Gleixner, and Jakob Nordström

Published in: LIPIcs, Volume 280, 29th International Conference on Principles and Practice of Constraint Programming (CP 2023)


Abstract
Conflict analysis has been successfully generalized from Boolean satisfiability (SAT) solving to mixed integer programming (MIP) solvers, but although MIP solvers operate with general linear inequalities, the conflict analysis in MIP has been limited to reasoning with the more restricted class of clausal constraint. This is in contrast to how conflict analysis is performed in so-called pseudo-Boolean solving, where solvers can reason directly with 0-1 integer linear inequalities rather than with clausal constraints extracted from such inequalities. In this work, we investigate how pseudo-Boolean conflict analysis can be integrated in MIP solving, focusing on 0-1 integer linear programs (0-1 ILPs). Phrased in MIP terminology, conflict analysis can be understood as a sequence of linear combinations and cuts. We leverage this perspective to design a new conflict analysis algorithm based on mixed integer rounding (MIR) cuts, which theoretically dominates the state-of-the-art division-based method in pseudo-Boolean solving. We also report results from a first proof-of-concept implementation of different pseudo-Boolean conflict analysis methods in the open-source MIP solver SCIP. When evaluated on a large and diverse set of 0-1 ILP instances from MIPLIB2017, our new MIR-based conflict analysis outperforms both previous pseudo-Boolean methods and the clause-based method used in MIP. Our conclusion is that pseudo-Boolean conflict analysis in MIP is a promising research direction that merits further study, and that it might also make sense to investigate the use of such conflict analysis to generate stronger no-goods in constraint programming.

Cite as

Gioni Mexi, Timo Berthold, Ambros Gleixner, and Jakob Nordström. Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning. In 29th International Conference on Principles and Practice of Constraint Programming (CP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 280, pp. 27:1-27:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{mexi_et_al:LIPIcs.CP.2023.27,
  author =	{Mexi, Gioni and Berthold, Timo and Gleixner, Ambros and Nordstr\"{o}m, Jakob},
  title =	{{Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning}},
  booktitle =	{29th International Conference on Principles and Practice of Constraint Programming (CP 2023)},
  pages =	{27:1--27:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-300-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{280},
  editor =	{Yap, Roland H. C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2023.27},
  URN =		{urn:nbn:de:0030-drops-190641},
  doi =		{10.4230/LIPIcs.CP.2023.27},
  annote =	{Keywords: Integer programming, pseudo-Boolean solving, conflict analysis, cutting planes proof system, mixed integer rounding, division, saturation}
}
  • Refine by Author
  • 1 Berthold, Timo
  • 1 Gleixner, Ambros
  • 1 Komárek, Jakub
  • 1 Koutecký, Martin
  • 1 Mexi, Gioni
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Solvers
  • 1 Theory of computation → Discrete optimization
  • 1 Theory of computation → Linear programming

  • Refine by Keyword
  • 1 Integer programming
  • 1 Linear programming
  • 1 circuit imbalance measure
  • 1 conflict analysis
  • 1 cutting planes proof system
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2023
  • 1 2024