2 Search Results for "Biswas, Arpita"


Document
Lower Bounds for Set-Multilinear Branching Programs

Authors: Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
In this paper, we prove super-polynomial lower bounds for the model of sum of ordered set-multilinear algebraic branching programs, each with a possibly different ordering (∑smABP). Specifically, we give an explicit nd-variate polynomial of degree d such that any ∑smABP computing it must have size n^ω(1) for d as low as ω(log n). Notably, this constitutes the first such lower bound in the low degree regime. Moreover, for d = poly(n), we demonstrate an exponential lower bound. This result generalizes the seminal work of Nisan (STOC, 1991), which proved an exponential lower bound for a single ordered set-multilinear ABP. The significance of our lower bounds is underscored by the recent work of Bhargav, Dwivedi, and Saxena (TAMC, 2024), which showed that super-polynomial lower bounds against a sum of ordered set-multilinear branching programs - for a polynomial of sufficiently low degree - would imply super-polynomial lower bounds against general ABPs, thereby resolving Valiant’s longstanding conjecture that the permanent polynomial can not be computed efficiently by ABPs. More precisely, their work shows that if one could obtain such lower bounds when the degree is bounded by O(log n/ log log n), then it would imply super-polynomial lower bounds against general ABPs. Our results strengthen the works of Arvind & Raja (Chic. J. Theor. Comput. Sci., 2016) and Bhargav, Dwivedi & Saxena (TAMC, 2024), as well as the works of Ramya & Rao (Theor. Comput. Sci., 2020) and Ghoshal & Rao (International Computer Science Symposium in Russia, 2021), each of which established lower bounds for related or restricted versions of this model. They also strongly answer a question from the former two, which asked to prove super-polynomial lower bounds for general ∑smABP.

Cite as

Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka. Lower Bounds for Set-Multilinear Branching Programs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.CCC.2024.20,
  author =	{Chatterjee, Prerona and Kush, Deepanshu and Saraf, Shubhangi and Shpilka, Amir},
  title =	{{Lower Bounds for Set-Multilinear Branching Programs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.20},
  URN =		{urn:nbn:de:0030-drops-204167},
  doi =		{10.4230/LIPIcs.CCC.2024.20},
  annote =	{Keywords: Lower Bounds, Algebraic Branching Programs, Set-multilinear polynomials}
}
Document
An Algorithmic Approach to Address Course Enrollment Challenges

Authors: Arpita Biswas, Yiduo Ke, Samir Khuller, and Quanquan C. Liu

Published in: LIPIcs, Volume 256, 4th Symposium on Foundations of Responsible Computing (FORC 2023)


Abstract
Massive surges of enrollments in courses have led to a crisis in several computer science departments - not only is the demand for certain courses extremely high from majors, but the demand from non-majors is also very high. Much of the time, this leads to significant frustration on the part of the students, and getting seats in desired courses is a rather ad-hoc process. One approach is to first collect information from students about which courses they want to take and to develop optimization models for assigning students to available seats in a fair manner. What makes this problem complex is that the courses themselves have time conflicts, and the students have credit caps (an upper bound on the number of courses they would like to enroll in). We model this problem as follows. We have n agents (students), and there are "resources" (these correspond to courses). Each agent is only interested in a subset of the resources (courses of interest), and each resource can only be assigned to a bounded number of agents (available seats). In addition, each resource corresponds to an interval of time, and the objective is to assign non-overlapping resources to agents so as to produce "fair and high utility" schedules. In this model, we provide a number of results under various settings and objective functions. Specifically, in this paper, we consider the following objective functions: total utility, max-min (Santa Claus objective), and envy-freeness. The total utility objective function maximizes the sum of the utilities of all courses assigned to students. The max-min objective maximizes the minimum utility obtained by any student. Finally, envy-freeness ensures that no student envies another student’s allocation. Under these settings and objective functions, we show a number of theoretical results. Specifically, we show that the course allocation under the time conflicts problem is NP-complete but becomes polynomial-time solvable when given only a constant number of students or all credits, course lengths, and utilities are uniform. Furthermore, we give a near-linear time algorithm for obtaining a constant 1/2-factor approximation for the general maximizing total utility problem when utility functions are binary. In addition, we show that there exists a near-linear time algorithm that obtains a 1/2-factor approximation on total utility and a 1/4-factor approximation on max-min utility when given uniform credit caps and uniform utilities. For the setting of binary valuations, we show three polynomial time algorithms for 1/2-factor approximation of total utility, envy-freeness up to one item, and a constant factor approximation of the max-min utility value when course lengths are within a constant factor of each other. Finally, we conclude with experimental results that demonstrate that our algorithms yield high-quality results in real-world settings.

Cite as

Arpita Biswas, Yiduo Ke, Samir Khuller, and Quanquan C. Liu. An Algorithmic Approach to Address Course Enrollment Challenges. In 4th Symposium on Foundations of Responsible Computing (FORC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 256, pp. 8:1-8:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{biswas_et_al:LIPIcs.FORC.2023.8,
  author =	{Biswas, Arpita and Ke, Yiduo and Khuller, Samir and Liu, Quanquan C.},
  title =	{{An Algorithmic Approach to Address Course Enrollment Challenges}},
  booktitle =	{4th Symposium on Foundations of Responsible Computing (FORC 2023)},
  pages =	{8:1--8:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-272-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{256},
  editor =	{Talwar, Kunal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2023.8},
  URN =		{urn:nbn:de:0030-drops-179297},
  doi =		{10.4230/LIPIcs.FORC.2023.8},
  annote =	{Keywords: fairness, allocation, matching, algorithms}
}
  • Refine by Author
  • 1 Biswas, Arpita
  • 1 Chatterjee, Prerona
  • 1 Ke, Yiduo
  • 1 Khuller, Samir
  • 1 Kush, Deepanshu
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Algebraic complexity theory
  • 1 Theory of computation → Scheduling algorithms

  • Refine by Keyword
  • 1 Algebraic Branching Programs
  • 1 Lower Bounds
  • 1 Set-multilinear polynomials
  • 1 algorithms
  • 1 allocation
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2023
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail