4 Search Results for "Bocquet, Rafaël"


Document
Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

Authors: Ambrus Kaposi and Szumi Xie

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Programming languages can be defined from the concrete to the abstract by abstract syntax trees, well-scoped syntax, well-typed (intrinsic) syntax, algebraic syntax (well-typed syntax quotiented by conversion). Another aspect is the representation of binding structure for which nominal approaches, De Bruijn indices/levels and higher order abstract syntax (HOAS) are available. In HOAS, binders are given by the function space of an internal language of presheaves. In this paper, we show how to combine the algebraic approach with the HOAS approach: following Uemura, we define languages as second-order generalised algebraic theories (SOGATs). Through a series of examples we show that non-substructural languages can be naturally defined as SOGATs. We give a formal definition of SOGAT signatures (using the syntax of a particular SOGAT) and define two translations from SOGAT signatures to GAT signatures (signatures for quotient inductive-inductive types), based on parallel and single substitutions, respectively.

Cite as

Ambrus Kaposi and Szumi Xie. Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kaposi_et_al:LIPIcs.FSCD.2024.10,
  author =	{Kaposi, Ambrus and Xie, Szumi},
  title =	{{Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{10:1--10:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.10},
  URN =		{urn:nbn:de:0030-drops-203396},
  doi =		{10.4230/LIPIcs.FSCD.2024.10},
  annote =	{Keywords: Type theory, universal algebra, inductive types, quotient inductive types, higher-order abstract syntax, logical framework}
}
Document
For the Metatheory of Type Theory, Internal Sconing Is Enough

Authors: Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler

Published in: LIPIcs, Volume 260, 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)


Abstract
Metatheorems about type theories are often proven by interpreting the syntax into models constructed using categorical gluing. We propose to use only sconing (gluing along a global section functor) instead of general gluing. The sconing is performed internally to a presheaf category, and we recover the original glued model by externalization. Our method relies on constructions involving two notions of models: first-order models (with explicit contexts) and higher-order models (without explicit contexts). Sconing turns a displayed higher-order model into a displayed first-order model. Using these, we derive specialized induction principles for the syntax of type theory. The input of such an induction principle is a boilerplate-free description of its motives and methods, not mentioning contexts. The output is a section with computation rules specified in the same internal language. We illustrate our framework by proofs of canonicity and normalization for type theory.

Cite as

Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. For the Metatheory of Type Theory, Internal Sconing Is Enough. In 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 260, pp. 18:1-18:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bocquet_et_al:LIPIcs.FSCD.2023.18,
  author =	{Bocquet, Rafa\"{e}l and Kaposi, Ambrus and Sattler, Christian},
  title =	{{For the Metatheory of Type Theory, Internal Sconing Is Enough}},
  booktitle =	{8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)},
  pages =	{18:1--18:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-277-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{260},
  editor =	{Gaboardi, Marco and van Raamsdonk, Femke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2023.18},
  URN =		{urn:nbn:de:0030-drops-180029},
  doi =		{10.4230/LIPIcs.FSCD.2023.18},
  annote =	{Keywords: type theory, presheaves, canonicity, normalization, sconing, gluing}
}
Document
Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts

Authors: Rafaël Bocquet

Published in: LIPIcs, Volume 239, 27th International Conference on Types for Proofs and Programs (TYPES 2021)


Abstract
We present a new strictification method for type-theoretic structures that are only weakly stable under substitution. Given weakly stable structures over some model of type theory, we construct equivalent strictly stable structures by evaluating the weakly stable structures at generic contexts. These generic contexts are specified using the categorical notion of familial representability. This generalizes the local universes method of Lumsdaine and Warren. We show that generic contexts can also be constructed in any category with families which is freely generated by collections of types and terms, without any definitional equality. This relies on the fact that they support first-order unification. These free models can only be equipped with weak type-theoretic structures, whose computation rules are given by typal equalities. Our main result is that any model of type theory with weakly stable weak type-theoretic structures admits an equivalent model with strictly stable weak type-theoretic structures.

Cite as

Rafaël Bocquet. Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts. In 27th International Conference on Types for Proofs and Programs (TYPES 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 239, pp. 3:1-3:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bocquet:LIPIcs.TYPES.2021.3,
  author =	{Bocquet, Rafa\"{e}l},
  title =	{{Strictification of Weakly Stable Type-Theoretic Structures Using Generic Contexts}},
  booktitle =	{27th International Conference on Types for Proofs and Programs (TYPES 2021)},
  pages =	{3:1--3:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-254-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{239},
  editor =	{Basold, Henning and Cockx, Jesper and Ghilezan, Silvia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2021.3},
  URN =		{urn:nbn:de:0030-drops-167724},
  doi =		{10.4230/LIPIcs.TYPES.2021.3},
  annote =	{Keywords: type theory, strictification, coherence, familial representability, unification}
}
Document
For Finitary Induction-Induction, Induction Is Enough

Authors: Ambrus Kaposi, András Kovács, and Ambroise Lafont

Published in: LIPIcs, Volume 175, 25th International Conference on Types for Proofs and Programs (TYPES 2019)


Abstract
Inductive-inductive types (IITs) are a generalisation of inductive types in type theory. They allow the mutual definition of types with multiple sorts where later sorts can be indexed by previous ones. An example is the Chapman-style syntax of type theory with conversion relations for each sort where e.g. the sort of types is indexed by contexts. In this paper we show that if a model of extensional type theory (ETT) supports indexed W-types, then it supports finitely branching IITs. We use a small internal type theory called the theory of signatures to specify IITs. We show that if a model of ETT supports the syntax for the theory of signatures, then it supports all IITs. We construct this syntax from indexed W-types using preterms and typing relations and prove its initiality following Streicher. The construction of the syntax and its initiality proof were formalised in Agda.

Cite as

Ambrus Kaposi, András Kovács, and Ambroise Lafont. For Finitary Induction-Induction, Induction Is Enough. In 25th International Conference on Types for Proofs and Programs (TYPES 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 175, pp. 6:1-6:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kaposi_et_al:LIPIcs.TYPES.2019.6,
  author =	{Kaposi, Ambrus and Kov\'{a}cs, Andr\'{a}s and Lafont, Ambroise},
  title =	{{For Finitary Induction-Induction, Induction Is Enough}},
  booktitle =	{25th International Conference on Types for Proofs and Programs (TYPES 2019)},
  pages =	{6:1--6:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-158-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{175},
  editor =	{Bezem, Marc and Mahboubi, Assia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2019.6},
  URN =		{urn:nbn:de:0030-drops-130707},
  doi =		{10.4230/LIPIcs.TYPES.2019.6},
  annote =	{Keywords: type theory, inductive types, inductive-inductive types}
}
  • Refine by Author
  • 3 Kaposi, Ambrus
  • 2 Bocquet, Rafaël
  • 1 Kovács, András
  • 1 Lafont, Ambroise
  • 1 Sattler, Christian
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Type theory

  • Refine by Keyword
  • 3 type theory
  • 2 inductive types
  • 1 Type theory
  • 1 canonicity
  • 1 coherence
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2020
  • 1 2022
  • 1 2023
  • 1 2024