2 Search Results for "Bordage, Sarah"


Document
Distribution-Free Proofs of Proximity

Authors: Hugo Aaronson, Tom Gur, Ninad Rajgopal, and Ron D. Rothblum

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Motivated by the fact that input distributions are often unknown in advance, distribution-free property testing considers a setting in which the algorithmic task is to accept functions f: [n] → {0,1} having a certain property Π and reject functions that are ε-far from Π, where the distance is measured according to an arbitrary and unknown input distribution 𝒟 ∼ [n]. As usual in property testing, the tester is required to do so while making only a sublinear number of input queries, but as the distribution is unknown, we also allow a sublinear number of samples from the distribution 𝒟. In this work we initiate the study of distribution-free interactive proofs of proximity (df-IPPs) in which the distribution-free testing algorithm is assisted by an all powerful but untrusted prover. Our main result is that for any problem Π ∈ NC, any proximity parameter ε > 0, and any (trade-off) parameter τ ≤ √n, we construct a df-IPP for Π with respect to ε, that has query and sample complexities τ+O(1/ε), and communication complexity Õ(n/τ + 1/ε). For τ as above and sufficiently large ε (namely, when ε > τ/n), this result matches the parameters of the best-known general purpose IPPs in the standard uniform setting. Moreover, for such τ, its parameters are optimal up to poly-logarithmic factors under reasonable cryptographic assumptions for the same regime of ε as the uniform setting, i.e., when ε ≥ 1/τ. For smaller values of ε (i.e., when ε < τ/n), our protocol has communication complexity Ω(1/ε), which is worse than the Õ(n/τ) communication complexity of the uniform IPPs (with the same query complexity). With the aim of improving on this gap, we further show that for IPPs over specialised, but large distribution families, such as sufficiently smooth distributions and product distributions, the communication complexity can be reduced to Õ(n/τ^{1-o(1)}). In addition, we show that for certain natural families of languages, such as symmetric and (relaxed) self-correctable languages, it is possible to further improve the efficiency of distribution-free IPPs.

Cite as

Hugo Aaronson, Tom Gur, Ninad Rajgopal, and Ron D. Rothblum. Distribution-Free Proofs of Proximity. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aaronson_et_al:LIPIcs.CCC.2024.24,
  author =	{Aaronson, Hugo and Gur, Tom and Rajgopal, Ninad and Rothblum, Ron D.},
  title =	{{Distribution-Free Proofs of Proximity}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.24},
  URN =		{urn:nbn:de:0030-drops-204204},
  doi =		{10.4230/LIPIcs.CCC.2024.24},
  annote =	{Keywords: Property Testing, Interactive Proofs, Distribution-Free Property Testing}
}
Document
Interactive Oracle Proofs of Proximity to Algebraic Geometry Codes

Authors: Sarah Bordage, Mathieu Lhotel, Jade Nardi, and Hugues Randriam

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
In this work, we initiate the study of proximity testing to Algebraic Geometry (AG) codes. An AG code C = C(𝒳, 𝒫, D) over an algebraic curve 𝒳 is a vector space associated to evaluations on 𝒫 ⊆ 𝒳 of functions in the Riemann-Roch space L_𝒳(D). The problem of testing proximity to an error-correcting code C consists in distinguishing between the case where an input word, given as an oracle, belongs to C and the one where it is far from every codeword of C. AG codes are good candidates to construct probabilistic proof systems, but there exists no efficient proximity tests for them. We aim to fill this gap. We construct an Interactive Oracle Proof of Proximity (IOPP) for some families of AG codes by generalizing an IOPP for Reed-Solomon codes, known as the FRI protocol [Eli Ben-Sasson et al., 2018]. We identify suitable requirements for designing efficient IOPP systems for AG codes. Our approach relies on a neat decomposition of the Riemann-Roch space of any invariant divisor under a group action on a curve into several explicit Riemann-Roch spaces on the quotient curve. We provide sufficient conditions on an AG code C that allow to reduce a proximity testing problem for C to a membership problem for a significantly smaller code C'. As concrete instantiations, we study AG codes on Kummer curves and curves in the Hermitian tower. The latter can be defined over polylogarithmic-size alphabet. We specialize the generic AG-IOPP construction to reach linear prover running time and logarithmic verification on Kummer curves, and quasilinear prover time with polylogarithmic verification on the Hermitian tower.

Cite as

Sarah Bordage, Mathieu Lhotel, Jade Nardi, and Hugues Randriam. Interactive Oracle Proofs of Proximity to Algebraic Geometry Codes. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 30:1-30:45, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bordage_et_al:LIPIcs.CCC.2022.30,
  author =	{Bordage, Sarah and Lhotel, Mathieu and Nardi, Jade and Randriam, Hugues},
  title =	{{Interactive Oracle Proofs of Proximity to Algebraic Geometry Codes}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{30:1--30:45},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.30},
  URN =		{urn:nbn:de:0030-drops-165923},
  doi =		{10.4230/LIPIcs.CCC.2022.30},
  annote =	{Keywords: Algebraic geometry codes, Interactive oracle proofs of proximity, Proximity testing}
}
  • Refine by Author
  • 1 Aaronson, Hugo
  • 1 Bordage, Sarah
  • 1 Gur, Tom
  • 1 Lhotel, Mathieu
  • 1 Nardi, Jade
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Interactive proof systems
  • 1 Theory of computation → Error-correcting codes

  • Refine by Keyword
  • 1 Algebraic geometry codes
  • 1 Distribution-Free Property Testing
  • 1 Interactive Proofs
  • 1 Interactive oracle proofs of proximity
  • 1 Property Testing
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2022
  • 1 2024