4 Search Results for "Bruni, Roberto"


Document
Termination of Generalized Term Rewriting Systems

Authors: Salvador Lucas

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We investigate termination of Generalized Term Rewriting Systems (GTRS), which extend Conditional Term Rewriting Systems by considering replacement restrictions on selected arguments of function symbols, as in Context-Sensitive Rewriting, and conditional rewriting rules whose conditional part may include not only a mix of the usual (reachability, joinability,...) conditions, but also atoms defined by a set of definite Horn clauses. GTRS can be used to prove confluence and termination of Generalized Rewrite Theories and Maude programs. We have characterized confluence of terminating GTRS as the joinability of a finite set of conditional pairs. Since termination of GTRS is underexplored to date, this paper introduces a Dependency Pair Framework which is well-suited to automatically (dis)prove termination of GTRS.

Cite as

Salvador Lucas. Termination of Generalized Term Rewriting Systems. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lucas:LIPIcs.FSCD.2024.32,
  author =	{Lucas, Salvador},
  title =	{{Termination of Generalized Term Rewriting Systems}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.32},
  URN =		{urn:nbn:de:0030-drops-203616},
  doi =		{10.4230/LIPIcs.FSCD.2024.32},
  annote =	{Keywords: Program Analysis, Reduction-Based Systems, Termination}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Invited Talk
Local Completeness for Program Correctness and Incorrectness (Invited Talk)

Authors: Roberto Bruni

Published in: LIPIcs, Volume 270, 10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)


Abstract
Program correctness techniques aim to prove the absence of bugs, but can yield false alarms because they tend to over-approximate program semantics. Vice versa, program incorrectness methods are aimed to detect true bugs, without false alarms, but cannot be used to prove correctness, because they under-approximate program semantics. In this invited talk we will overview our ongoing research on the use of the abstract interpretation framework to combine under- and over-approximation in the same analysis and distill a logic for program correctness and incorrectness.

Cite as

Roberto Bruni. Local Completeness for Program Correctness and Incorrectness (Invited Talk). In 10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 270, pp. 2:1-2:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bruni:LIPIcs.CALCO.2023.2,
  author =	{Bruni, Roberto},
  title =	{{Local Completeness for Program Correctness and Incorrectness}},
  booktitle =	{10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023)},
  pages =	{2:1--2:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-287-7},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{270},
  editor =	{Baldan, Paolo and de Paiva, Valeria},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2023.2},
  URN =		{urn:nbn:de:0030-drops-187993},
  doi =		{10.4230/LIPIcs.CALCO.2023.2},
  annote =	{Keywords: Program analysis, program verification, Hoare logic, incorrectness logic, abstract interpretation, local completeness}
}
Document
Summary 3: On Graph(ic) Encodings

Authors: Roberto Bruni and Ivan Lanese

Published in: Dagstuhl Seminar Proceedings, Volume 4241, Graph Transformations and Process Algebras for Modeling Distributed and Mobile Systems (2005)


Abstract
This paper is an informal summary of different encoding techniques from process calculi and distributed formalisms to graphic frameworks. The survey includes the use of solo diagrams, term graphs, synchronized hyperedge replacement systems, bigraphs, tile models and interactive systems, all presented at the Dagstuhl Seminar 04241. The common theme of all techniques recalled here is having a graphic presentation that, at the same time, gives both an intuitive visual rendering (of processes, states, etc.) and a rigorous mathematical framework.

Cite as

Roberto Bruni and Ivan Lanese. Summary 3: On Graph(ic) Encodings. In Graph Transformations and Process Algebras for Modeling Distributed and Mobile Systems. Dagstuhl Seminar Proceedings, Volume 4241, pp. 1-15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005)


Copy BibTex To Clipboard

@InProceedings{bruni_et_al:DagSemProc.04241.4,
  author =	{Bruni, Roberto and Lanese, Ivan},
  title =	{{Summary 3: On Graph(ic) Encodings}},
  booktitle =	{Graph Transformations and Process Algebras for Modeling Distributed and Mobile Systems},
  pages =	{1--15},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2005},
  volume =	{4241},
  editor =	{Barbara K\"{o}nig and Ugo Montanari and Philippa Gardner},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.04241.4},
  URN =		{urn:nbn:de:0030-drops-303},
  doi =		{10.4230/DagSemProc.04241.4},
  annote =	{Keywords: graph transformation , process calculi , encodings}
}
  • Refine by Author
  • 2 Bruni, Roberto
  • 1 Delgrande, James P.
  • 1 Glimm, Birte
  • 1 Lanese, Ivan
  • 1 Lucas, Salvador
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Logic and verification
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Information systems → Information integration
  • 1 Theory of computation → Abstraction
  • Show More...

  • Refine by Keyword
  • 1 Applications of logics
  • 1 Declarative representations
  • 1 Formal logic
  • 1 Hoare logic
  • 1 Knowledge representation and reasoning
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2024
  • 1 2005
  • 1 2023