4 Search Results for "Chao, Rui"


Document
Track A: Algorithms, Complexity and Games
Non-Linear Paging

Authors: Ilan Doron-Arad and Joseph (Seffi) Naor

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We formulate and study non-linear paging - a broad model of online paging where the size of subsets of pages is determined by a monotone non-linear set function of the pages. This model captures the well-studied classic weighted paging and generalized paging problems, and also submodular and supermodular paging, studied here for the first time, that have a range of applications from virtual memory to machine learning. Unlike classic paging, the cache threshold parameter k does not yield good competitive ratios for non-linear paging. Instead, we introduce a novel parameter 𝓁 that generalizes the notion of cache size to the non-linear setting. We obtain a tight deterministic 𝓁-competitive algorithm for general non-linear paging and a o(log²𝓁)-competitive lower bound for randomized algorithms. Our algorithm is based on a new generic LP for the problem that captures both submodular and supermodular paging, in contrast to LPs used for submodular cover settings. We finally focus on the supermodular paging problem, which is a variant of online set cover and online submodular cover, where sets are repeatedly requested to be removed from the cover. We obtain polylogarithmic lower and upper bounds and an offline approximation algorithm.

Cite as

Ilan Doron-Arad and Joseph (Seffi) Naor. Non-Linear Paging. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 57:1-57:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{doronarad_et_al:LIPIcs.ICALP.2024.57,
  author =	{Doron-Arad, Ilan and Naor, Joseph (Seffi)},
  title =	{{Non-Linear Paging}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{57:1--57:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.57},
  URN =		{urn:nbn:de:0030-drops-202000},
  doi =		{10.4230/LIPIcs.ICALP.2024.57},
  annote =	{Keywords: paging, competitive analysis, non-linear paging, submodular and supermodular functions}
}
Document
Survey
Semantic Web: Past, Present, and Future

Authors: Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called "Semantic Web Layer Cake" with an update of recent concepts that include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We conclude with an outlook on the future directions of the Semantic Web. This is a living document. If you like to contribute, please contact the first author and visit: https://github.com/ascherp/semantic-web-primer

Cite as

Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal. Semantic Web: Past, Present, and Future. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 3:1-3:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{scherp_et_al:TGDK.2.1.3,
  author =	{Scherp, Ansgar and Groener, Gerd and \v{S}koda, Petr and Hose, Katja and Vidal, Maria-Esther},
  title =	{{Semantic Web: Past, Present, and Future}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:37},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.3},
  URN =		{urn:nbn:de:0030-drops-198607},
  doi =		{10.4230/TGDK.2.1.3},
  annote =	{Keywords: Linked Open Data, Semantic Web Graphs, Knowledge Graphs}
}
Document
Fault-Tolerant Syndrome Extraction and Cat State Preparation with Fewer Qubits

Authors: Prithviraj Prabhu and Ben W. Reichardt

Published in: LIPIcs, Volume 197, 16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021)


Abstract
We reduce the extra qubits needed for two fault-tolerant quantum computing protocols: error correction, specifically syndrome bit measurement, and cat state preparation. For fault-tolerant syndrome extraction, we show an exponential reduction in qubit overhead over the previous best protocol. For a weight-w stabilizer, we demonstrate that stabilizer measurement tolerating one fault (distance-three) needs at most ⌈ log₂ w ⌉ + 1 ancillas. If qubits reset quickly, four ancillas suffice. We also study the preparation of cat states, simple yet versatile entangled states. We prove that the overhead needed for distance-three fault tolerance is only logarithmic in the cat state size. These results could be useful both for near-term experiments with a few qubits, and for the general study of the asymptotic resource requirements of syndrome measurement and state preparation. For 'a' measured flag bits, there are 2^a possible flag patterns that can identify faults. Hence our results come from solving a combinatorial problem: the construction of maximal-length paths in the a-dimensional hypercube, corresponding to maximal-weight stabilizers or maximal-weight cat states.

Cite as

Prithviraj Prabhu and Ben W. Reichardt. Fault-Tolerant Syndrome Extraction and Cat State Preparation with Fewer Qubits. In 16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 197, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{prabhu_et_al:LIPIcs.TQC.2021.5,
  author =	{Prabhu, Prithviraj and Reichardt, Ben W.},
  title =	{{Fault-Tolerant Syndrome Extraction and Cat State Preparation with Fewer Qubits}},
  booktitle =	{16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021)},
  pages =	{5:1--5:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-198-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{197},
  editor =	{Hsieh, Min-Hsiu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2021.5},
  URN =		{urn:nbn:de:0030-drops-140001},
  doi =		{10.4230/LIPIcs.TQC.2021.5},
  annote =	{Keywords: Quantum error correction, fault tolerance, quantum state preparation, combinatorics}
}
Document
Overlapping Qubits

Authors: Rui Chao, Ben W. Reichardt, Chris Sutherland, and Thomas Vidick

Published in: LIPIcs, Volume 67, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017)


Abstract
An ideal system of n qubits has 2^n dimensions. This exponential grants power, but also hinders characterizing the system's state and dynamics. We study a new problem: the qubits in a physical system might not be independent. They can "overlap," in the sense that an operation on one qubit slightly affects the others. We show that allowing for slight overlaps, n qubits can fit in just polynomially many dimensions. (Defined in a natural way, all pairwise overlaps can be <= epsilon in n^{O(1/epsilon^2)} dimensions.) Thus, even before considering issues like noise, a real system of n qubits might inherently lack any potential for exponential power. On the other hand, we also provide an efficient test to certify exponential dimensionality. Unfortunately, the test is sensitive to noise. It is important to devise more robust tests on the arrangements of qubits in quantum devices.

Cite as

Rui Chao, Ben W. Reichardt, Chris Sutherland, and Thomas Vidick. Overlapping Qubits. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 48:1-48:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{chao_et_al:LIPIcs.ITCS.2017.48,
  author =	{Chao, Rui and Reichardt, Ben W. and Sutherland, Chris and Vidick, Thomas},
  title =	{{Overlapping Qubits}},
  booktitle =	{8th Innovations in Theoretical Computer Science Conference (ITCS 2017)},
  pages =	{48:1--48:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-029-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{67},
  editor =	{Papadimitriou, Christos H.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.48},
  URN =		{urn:nbn:de:0030-drops-81826},
  doi =		{10.4230/LIPIcs.ITCS.2017.48},
  annote =	{Keywords: Quantum computing, Qubits, Dimension test}
}
  • Refine by Author
  • 2 Reichardt, Ben W.
  • 1 Chao, Rui
  • 1 Doron-Arad, Ilan
  • 1 Groener, Gerd
  • 1 Hose, Katja
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Computing methodologies → Ontology engineering
  • 1 Hardware → Quantum error correction and fault tolerance
  • 1 Information systems → Markup languages
  • 1 Information systems → Semantic web description languages
  • Show More...

  • Refine by Keyword
  • 1 Dimension test
  • 1 Knowledge Graphs
  • 1 Linked Open Data
  • 1 Quantum computing
  • 1 Quantum error correction
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2024
  • 1 2017
  • 1 2021