3 Search Results for "Goto, Keisuke"


Document
Computing NP-Hard Repetitiveness Measures via MAX-SAT

Authors: Hideo Bannai, Keisuke Goto, Masakazu Ishihata, Shunsuke Kanda, Dominik Köppl, and Takaaki Nishimoto

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Repetitiveness measures reveal profound characteristics of datasets, and give rise to compressed data structures and algorithms working in compressed space. Alas, the computation of some of these measures is NP-hard, and straight-forward computation is infeasible for datasets of even small sizes. Three such measures are the smallest size of a string attractor, the smallest size of a bidirectional macro scheme, and the smallest size of a straight-line program. While a vast variety of implementations for heuristically computing approximations exist, exact computation of these measures has received little to no attention. In this paper, we present MAX-SAT formulations that provide the first non-trivial implementations for exact computation of smallest string attractors, smallest bidirectional macro schemes, and smallest straight-line programs. Computational experiments show that our implementations work for texts of length up to a few hundred for straight-line programs and bidirectional macro schemes, and texts even over a million for string attractors.

Cite as

Hideo Bannai, Keisuke Goto, Masakazu Ishihata, Shunsuke Kanda, Dominik Köppl, and Takaaki Nishimoto. Computing NP-Hard Repetitiveness Measures via MAX-SAT. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bannai_et_al:LIPIcs.ESA.2022.12,
  author =	{Bannai, Hideo and Goto, Keisuke and Ishihata, Masakazu and Kanda, Shunsuke and K\"{o}ppl, Dominik and Nishimoto, Takaaki},
  title =	{{Computing NP-Hard Repetitiveness Measures via MAX-SAT}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.12},
  URN =		{urn:nbn:de:0030-drops-169505},
  doi =		{10.4230/LIPIcs.ESA.2022.12},
  annote =	{Keywords: repetitiveness measures, string attractor, bidirectional macro scheme}
}
Document
Wear Leveling Revisited

Authors: Taku Onodera and Tetsuo Shibuya

Published in: LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)


Abstract
Wear leveling - a technology designed to balance the write counts among memory cells regardless of the requested accesses - is vital in prolonging the lifetime of certain computer memory devices, especially the type of next-generation non-volatile memory, known as phase change memory (PCM). Although researchers have been working extensively on wear leveling, almost all existing studies mainly focus on the practical aspects and lack rigorous mathematical analyses. The lack of theory is particularly problematic for security-critical applications. We address this issue by revisiting wear leveling from a theoretical perspective. First, we completely determine the problem parameter regime for which Security Refresh - one of the most well-known existing wear leveling schemes for PCM - works effectively by providing a positive result and a matching negative result. In particular, Security Refresh is not competitive for the practically relevant regime of large-scale memory. Then, we propose a novel scheme that achieves better lifetime, time/space overhead, and wear-free space for the relevant regime not covered by Security Refresh. Unlike existing studies, we give rigorous theoretical lifetime analyses, which is necessary to assess and control the security risk.

Cite as

Taku Onodera and Tetsuo Shibuya. Wear Leveling Revisited. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 65:1-65:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{onodera_et_al:LIPIcs.ISAAC.2020.65,
  author =	{Onodera, Taku and Shibuya, Tetsuo},
  title =	{{Wear Leveling Revisited}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{65:1--65:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Cao, Yixin and Cheng, Siu-Wing and Li, Minming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.65},
  URN =		{urn:nbn:de:0030-drops-134092},
  doi =		{10.4230/LIPIcs.ISAAC.2020.65},
  annote =	{Keywords: Wear leveling, Randomized algorithm, Non-volatile memory}
}
Document
Online Algorithms for Constructing Linear-Size Suffix Trie

Authors: Diptarama Hendrian, Takuya Takagi, and Shunsuke Inenaga

Published in: LIPIcs, Volume 128, 30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019)


Abstract
The suffix trees are fundamental data structures for various kinds of string processing. The suffix tree of a string T of length n has O(n) nodes and edges, and the string label of each edge is encoded by a pair of positions in T. Thus, even after the tree is built, the input text T needs to be kept stored and random access to T is still needed. The linear-size suffix tries (LSTs), proposed by Crochemore et al. [Linear-size suffix tries, TCS 638:171-178, 2016], are a "stand-alone" alternative to the suffix trees. Namely, the LST of a string T of length n occupies O(n) total space, and supports pattern matching and other tasks in the same efficiency as the suffix tree without the need to store the input text T. Crochemore et al. proposed an offline algorithm which transforms the suffix tree of T into the LST of T in O(n log sigma) time and O(n) space, where sigma is the alphabet size. In this paper, we present two types of online algorithms which "directly" construct the LST, from right to left, and from left to right, without constructing the suffix tree as an intermediate structure. Both algorithms construct the LST incrementally when a new symbol is read, and do not access to the previously read symbols. The right-to-left construction algorithm works in O(n log sigma) time and O(n) space and the left-to-right construction algorithm works in O(n (log sigma + log n / log log n)) time and O(n) space. The main feature of our algorithms is that the input text does not need to be stored.

Cite as

Diptarama Hendrian, Takuya Takagi, and Shunsuke Inenaga. Online Algorithms for Constructing Linear-Size Suffix Trie. In 30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 128, pp. 30:1-30:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{hendrian_et_al:LIPIcs.CPM.2019.30,
  author =	{Hendrian, Diptarama and Takagi, Takuya and Inenaga, Shunsuke},
  title =	{{Online Algorithms for Constructing Linear-Size Suffix Trie}},
  booktitle =	{30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019)},
  pages =	{30:1--30:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-103-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{128},
  editor =	{Pisanti, Nadia and P. Pissis, Solon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2019.30},
  URN =		{urn:nbn:de:0030-drops-105016},
  doi =		{10.4230/LIPIcs.CPM.2019.30},
  annote =	{Keywords: Indexing structure, Linear-size suffix trie, Online algorithm, Pattern Matching}
}
  • Refine by Author
  • 1 Bannai, Hideo
  • 1 Goto, Keisuke
  • 1 Hendrian, Diptarama
  • 1 Inenaga, Shunsuke
  • 1 Ishihata, Masakazu
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Data structures design and analysis
  • 1 Hardware → Memory and dense storage
  • 1 Security and privacy → Security in hardware
  • 1 Theory of computation → Data compression
  • 1 Theory of computation → Pattern matching

  • Refine by Keyword
  • 1 Indexing structure
  • 1 Linear-size suffix trie
  • 1 Non-volatile memory
  • 1 Online algorithm
  • 1 Pattern Matching
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2019
  • 1 2020
  • 1 2022