2 Search Results for "Gowers, W. John"


Document
The Flower Calculus

Authors: Pablo Donato

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We introduce the flower calculus, a deep inference proof system for intuitionistic first-order logic inspired by Peirce’s existential graphs. It works as a rewriting system over inductive objects called "flowers", that enjoy both a graphical interpretation as topological diagrams, and a textual presentation as nested sequents akin to coherent formulas. Importantly, the calculus dispenses completely with the traditional notion of symbolic connective, operating solely on nested flowers containing atomic predicates. We prove both the soundness of the full calculus and the completeness of an analytic fragment with respect to Kripke semantics. This provides to our knowledge the first analyticity result for a proof system based on existential graphs, adapting semantic cut-elimination techniques to a deep inference setting. Furthermore, the kernel of rules targetted by completeness is fully invertible, a desirable property for both automated and interactive proof search.

Cite as

Pablo Donato. The Flower Calculus. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 5:1-5:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{donato:LIPIcs.FSCD.2024.5,
  author =	{Donato, Pablo},
  title =	{{The Flower Calculus}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{5:1--5:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.5},
  URN =		{urn:nbn:de:0030-drops-203343},
  doi =		{10.4230/LIPIcs.FSCD.2024.5},
  annote =	{Keywords: deep inference, graphical calculi, existential graphs, intuitionistic logic, Kripke semantics, cut-elimination}
}
Document
A Fully Abstract Game Semantics for Countable Nondeterminism

Authors: W. John Gowers and James D. Laird

Published in: LIPIcs, Volume 119, 27th EACSL Annual Conference on Computer Science Logic (CSL 2018)


Abstract
The concept of fairness for a concurrent program means that the program must be able to exhibit an unbounded amount of nondeterminism without diverging. Game semantics models of nondeterminism show that this is hard to implement; for example, Harmer and McCusker's model only admits infinite nondeterminism if there is also the possibility of divergence. We solve a long standing problem by giving a fully abstract game semantics for a simple stateful language with a countably infinite nondeterminism primitive. We see that doing so requires us to keep track of infinitary information about strategies, as well as their finite behaviours. The unbounded nondeterminism gives rise to further problems, which can be formalized as a lack of continuity in the language. In order to prove adequacy for our model (which usually requires continuity), we develop a new technique in which we simulate the nondeterminism using a deterministic stateful construction, and then use combinatorial techniques to transfer the result to the nondeterministic language. Lastly, we prove full abstraction for the model; because of the lack of continuity, we cannot deduce this from definability of compact elements in the usual way, and we have to use a stronger universality result instead. We discuss how our techniques yield proofs of adequacy for models of nondeterministic PCF, such as those given by Tsukada and Ong.

Cite as

W. John Gowers and James D. Laird. A Fully Abstract Game Semantics for Countable Nondeterminism. In 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 119, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{gowers_et_al:LIPIcs.CSL.2018.24,
  author =	{Gowers, W. John and Laird, James D.},
  title =	{{A Fully Abstract Game Semantics for Countable Nondeterminism}},
  booktitle =	{27th EACSL Annual Conference on Computer Science Logic (CSL 2018)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-088-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{119},
  editor =	{Ghica, Dan R. and Jung, Achim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2018.24},
  URN =		{urn:nbn:de:0030-drops-96918},
  doi =		{10.4230/LIPIcs.CSL.2018.24},
  annote =	{Keywords: semantics, nondeterminism, games and logic}
}
  • Refine by Author
  • 1 Donato, Pablo
  • 1 Gowers, W. John
  • 1 Laird, James D.

  • Refine by Classification
  • 1 Theory of computation → Constructive mathematics
  • 1 Theory of computation → Denotational semantics
  • 1 Theory of computation → Proof theory

  • Refine by Keyword
  • 1 Kripke semantics
  • 1 cut-elimination
  • 1 deep inference
  • 1 existential graphs
  • 1 games and logic
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2018
  • 1 2024