2 Search Results for "Goyal, Vineet"


Document
Track A: Algorithms, Complexity and Games
Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces

Authors: Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the well-studied Robust (k,z)-Clustering problem, which generalizes the classic k-Median, k-Means, and k-Center problems and arises in the domains of robust optimization [Anthony, Goyal, Gupta, Nagarajan, Math. Oper. Res. 2010] and in algorithmic fairness [Abbasi, Bhaskara, Venkatasubramanian, 2021 & Ghadiri, Samadi, Vempala, 2022]. Given a constant z ≥ 1, the input to Robust (k,z)-Clustering is a set P of n points in a metric space (M,δ), a weight function w: P → ℝ_{≥ 0} and a positive integer k. Further, each point belongs to one (or more) of the m many different groups S_1,S_2,…,S_m ⊆ P. Our goal is to find a set X of k centers such that max_{i ∈ [m]} ∑_{p ∈ S_i} w(p) δ(p,X)^z is minimized. Complementing recent work on this problem, we give a comprehensive understanding of the parameterized approximability of the problem in geometric spaces where the parameter is the number k of centers. We prove the following results: [(i)] 1) For a universal constant η₀ > 0.0006, we devise a 3^z(1-η₀)-factor FPT approximation algorithm for Robust (k,z)-Clustering in discrete high-dimensional Euclidean spaces where the set of potential centers is finite. This shows that the lower bound of 3^z for general metrics [Goyal, Jaiswal, Inf. Proc. Letters, 2023] no longer holds when the metric has geometric structure. 2) We show that Robust (k,z)-Clustering in discrete Euclidean spaces is (√{3/2}- o(1))-hard to approximate for FPT algorithms, even if we consider the special case k-Center in logarithmic dimensions. This rules out a (1+ε)-approximation algorithm running in time f(k,ε)poly(m,n) (also called efficient parameterized approximation scheme or EPAS), giving a striking contrast with the recent EPAS for the continuous setting where centers can be placed anywhere in the space [Abbasi et al., FOCS'23]. 3) However, we obtain an EPAS for Robust (k,z)-Clustering in discrete Euclidean spaces when the dimension is sublogarithmic (for the discrete problem, earlier work [Abbasi et al., FOCS'23] provides an EPAS only in dimension o(log log n)). Our EPAS works also for metrics of sub-logarithmic doubling dimension.

Cite as

Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abbasi_et_al:LIPIcs.ICALP.2024.6,
  author =	{Abbasi, Fateme and Banerjee, Sandip and Byrka, Jaros{\l}aw and Chalermsook, Parinya and Gadekar, Ameet and Khodamoradi, Kamyar and Marx, D\'{a}niel and Sharma, Roohani and Spoerhase, Joachim},
  title =	{{Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.6},
  URN =		{urn:nbn:de:0030-drops-201494},
  doi =		{10.4230/LIPIcs.ICALP.2024.6},
  annote =	{Keywords: Clustering, approximation algorithms, parameterized complexity}
}
Document
APPROX
Matching Drivers to Riders: A Two-Stage Robust Approach

Authors: Omar El Housni, Vineet Goyal, Oussama Hanguir, and Clifford Stein

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
Matching demand (riders) to supply (drivers) efficiently is a fundamental problem for ride-hailing platforms who need to match the riders (almost) as soon as the request arrives with only partial knowledge about future ride requests. A myopic approach that computes an optimal matching for current requests ignoring future uncertainty can be highly sub-optimal. In this paper, we consider a two-stage robust optimization framework for this matching problem where future demand uncertainty is modeled using a set of demand scenarios (specified explicitly or implicitly). The goal is to match the current request to drivers (in the first stage) so that the cost of first stage matching and the worst-case cost over all scenarios for the second stage matching is minimized. We show that this two-stage robust matching is NP-hard under both explicit and implicit models of uncertainty. We present constant approximation algorithms for both models of uncertainty under different settings and show they improve significantly over standard greedy approaches.

Cite as

Omar El Housni, Vineet Goyal, Oussama Hanguir, and Clifford Stein. Matching Drivers to Riders: A Two-Stage Robust Approach. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 12:1-12:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{housni_et_al:LIPIcs.APPROX/RANDOM.2021.12,
  author =	{Housni, Omar El and Goyal, Vineet and Hanguir, Oussama and Stein, Clifford},
  title =	{{Matching Drivers to Riders: A Two-Stage Robust Approach}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{12:1--12:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.12},
  URN =		{urn:nbn:de:0030-drops-147054},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.12},
  annote =	{Keywords: matching, robust optimization, approximation algorithms}
}
  • Refine by Author
  • 1 Abbasi, Fateme
  • 1 Banerjee, Sandip
  • 1 Byrka, Jarosław
  • 1 Chalermsook, Parinya
  • 1 Gadekar, Ameet
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Facility location and clustering

  • Refine by Keyword
  • 2 approximation algorithms
  • 1 Clustering
  • 1 matching
  • 1 parameterized complexity
  • 1 robust optimization

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2021
  • 1 2024