5 Search Results for "Greenhill, Catherine"


Document
Track A: Algorithms, Complexity and Games
A Spectral Approach to Approximately Counting Independent Sets in Dense Bipartite Graphs

Authors: Charlie Carlson, Ewan Davies, Alexandra Kolla, and Aditya Potukuchi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We give a randomized algorithm that approximates the number of independent sets in a dense, regular bipartite graph - in the language of approximate counting, we give an FPRAS for #BIS on the class of dense, regular bipartite graphs. Efficient counting algorithms typically apply to "high-temperature" problems on bounded-degree graphs, and our contribution is a notable exception as it applies to dense graphs in a low-temperature setting. Our methods give a counting-focused complement to the long line of work in combinatorial optimization showing that CSPs such as Max-Cut and Unique Games are easy on dense graphs via spectral arguments. Our contributions include a novel extension of the method of graph containers that differs considerably from other recent low-temperature algorithms. The additional key insights come from spectral graph theory and have previously been successful in approximation algorithms. As a result, we can overcome some limitations that seem inherent to the aforementioned class of algorithms. In particular, we exploit the fact that dense, regular graphs exhibit a kind of small-set expansion (i.e., bounded threshold rank), which, via subspace enumeration, lets us enumerate small cuts efficiently.

Cite as

Charlie Carlson, Ewan Davies, Alexandra Kolla, and Aditya Potukuchi. A Spectral Approach to Approximately Counting Independent Sets in Dense Bipartite Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 35:1-35:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{carlson_et_al:LIPIcs.ICALP.2024.35,
  author =	{Carlson, Charlie and Davies, Ewan and Kolla, Alexandra and Potukuchi, Aditya},
  title =	{{A Spectral Approach to Approximately Counting Independent Sets in Dense Bipartite Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{35:1--35:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.35},
  URN =		{urn:nbn:de:0030-drops-201782},
  doi =		{10.4230/LIPIcs.ICALP.2024.35},
  annote =	{Keywords: approximate counting, independent sets, bipartite graphs, graph containers}
}
Document
Track A: Algorithms, Complexity and Games
An FPRAS for Two Terminal Reliability in Directed Acyclic Graphs

Authors: Weiming Feng and Heng Guo

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We give a fully polynomial-time randomized approximation scheme (FPRAS) for two terminal reliability in directed acyclic graphs (DAGs). In contrast, we also show the complementing problem of approximating two terminal unreliability in DAGs is #BIS-hard.

Cite as

Weiming Feng and Heng Guo. An FPRAS for Two Terminal Reliability in Directed Acyclic Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 62:1-62:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{feng_et_al:LIPIcs.ICALP.2024.62,
  author =	{Feng, Weiming and Guo, Heng},
  title =	{{An FPRAS for Two Terminal Reliability in Directed Acyclic Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{62:1--62:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.62},
  URN =		{urn:nbn:de:0030-drops-202057},
  doi =		{10.4230/LIPIcs.ICALP.2024.62},
  annote =	{Keywords: Approximate counting, Network reliability, Sampling algorithm}
}
Document
Track A: Algorithms, Complexity and Games
Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters

Authors: Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Paweł Rzążewski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H). In the graph homomorphism problem, denoted by Hom(H), the graph H is fixed and we need to determine if there exists a homomorphism from an instance graph G to H. We study the complexity of the problem parameterized by the cutwidth of G, i.e., we assume that G is given along with a linear ordering v_1,…,v_n of V(G) such that, for each i ∈ {1,…,n-1}, the number of edges with one endpoint in {v_1,…,v_i} and the other in {v_{i+1},…,v_n} is at most k. We aim, for each H, for algorithms for Hom(H) running in time c_H^k n^𝒪(1) and matching lower bounds that exclude c_H^{k⋅o(1)} n^𝒪(1) or c_H^{k(1-Ω(1))} n^𝒪(1) time algorithms under the (Strong) Exponential Time Hypothesis. In the paper we introduce a new parameter that we call mimsup(H). Our main contribution is strong evidence of a close connection between c_H and mimsup(H): - an information-theoretic argument that the number of states needed in a natural dynamic programming algorithm is at most mimsup(H)^k, - lower bounds that show that for almost all graphs H indeed we have c_H ≥ mimsup(H), assuming the (Strong) Exponential-Time Hypothesis, and - an algorithm with running time exp(𝒪(mimsup(H)⋅k log k)) n^𝒪(1). In the last result we do not need to assume that H is a fixed graph. Thus, as a consequence, we obtain that the problem of deciding whether G admits a homomorphism to H is fixed-parameter tractable, when parameterized by cutwidth of G and mimsup(H). The parameter mimsup(H) can be thought of as the p-th root of the maximum induced matching number in the graph obtained by multiplying p copies of H via a certain graph product, where p tends to infinity. It can also be defined as an asymptotic rank parameter of the adjacency matrix of H. Such parameters play a central role in, among others, algebraic complexity theory and additive combinatorics. Our results tightly link the parameterized complexity of a problem to such an asymptotic matrix parameter for the first time.

Cite as

Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Paweł Rzążewski. Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 77:1-77:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{groenland_et_al:LIPIcs.ICALP.2024.77,
  author =	{Groenland, Carla and Mannens, Isja and Nederlof, Jesper and Piecyk, Marta and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Towards Tight Bounds for the Graph Homomorphism Problem Parameterized by Cutwidth via Asymptotic Matrix Parameters}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{77:1--77:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.77},
  URN =		{urn:nbn:de:0030-drops-202208},
  doi =		{10.4230/LIPIcs.ICALP.2024.77},
  annote =	{Keywords: graph homomorphism, cutwidth, asymptotic matrix parameters}
}
Document
RANDOM
Balanced Allocation on Dynamic Hypergraphs

Authors: Catherine Greenhill, Bernard Mans, and Ali Pourmiri

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
The {balls-into-bins model} randomly allocates n sequential balls into n bins, as follows: each ball selects a set D of d ⩾ 2 bins, independently and uniformly at random, then the ball is allocated to a least-loaded bin from D (ties broken randomly). The maximum load is the maximum number of balls in any bin. In 1999, Azar et al. showed that, provided ties are broken randomly, after n balls have been placed the maximum load, is log_d log n + 𝒪(1), with high probability. We consider this popular paradigm in a dynamic environment where the bins are structured as a dynamic hypergraph. A dynamic hypergraph is a sequence of hypergraphs, say ℋ^(t), arriving over discrete times t = 1,2,…, such that the vertex set of ℋ^(t)’s is the set of n bins, but (hyper)edges may change over time. In our model, the t-th ball chooses an edge from ℋ^(t) uniformly at random, and then chooses a set D of d ⩾ 2 random bins from the selected edge. The ball is allocated to a least-loaded bin from D, with ties broken randomly. We quantify the dynamicity of the model by introducing the notion of pair visibility, which measures the number of rounds in which a pair of bins appears within a (hyper)edge. We prove that if, for some ε > 0, a dynamic hypergraph has pair visibility at most n^{1-ε}, and some mild additional conditions hold, then with high probability the process has maximum load 𝒪(log_dlog n). Our proof is based on a variation of the witness tree technique, which is of independent interest. The model can also be seen as an adversarial model where an adversary decides the structure of the possible sets of d bins available to each ball.

Cite as

Catherine Greenhill, Bernard Mans, and Ali Pourmiri. Balanced Allocation on Dynamic Hypergraphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 11:1-11:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{greenhill_et_al:LIPIcs.APPROX/RANDOM.2020.11,
  author =	{Greenhill, Catherine and Mans, Bernard and Pourmiri, Ali},
  title =	{{Balanced Allocation on Dynamic Hypergraphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{11:1--11:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.11},
  URN =		{urn:nbn:de:0030-drops-126149},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.11},
  annote =	{Keywords: balls-into-bins, balanced allocation, power of two choices, witness tree technique}
}
Document
Track A: Algorithms, Complexity and Games
A Dichotomy for Bounded Degree Graph Homomorphisms with Nonnegative Weights

Authors: Artem Govorov, Jin-Yi Cai, and Martin Dyer

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We consider the complexity of counting weighted graph homomorphisms defined by a symmetric matrix A. Each symmetric matrix A defines a graph homomorphism function Z_A(⋅), also known as the partition function. Dyer and Greenhill [Martin E. Dyer and Catherine S. Greenhill, 2000] established a complexity dichotomy of Z_A(⋅) for symmetric {0, 1}-matrices A, and they further proved that its #P-hardness part also holds for bounded degree graphs. Bulatov and Grohe [Andrei Bulatov and Martin Grohe, 2005] extended the Dyer-Greenhill dichotomy to nonnegative symmetric matrices A. However, their hardness proof requires graphs of arbitrarily large degree, and whether the bounded degree part of the Dyer-Greenhill dichotomy can be extended has been an open problem for 15 years. We resolve this open problem and prove that for nonnegative symmetric A, either Z_A(G) is in polynomial time for all graphs G, or it is #P-hard for bounded degree (and simple) graphs G. We further extend the complexity dichotomy to include nonnegative vertex weights. Additionally, we prove that the #P-hardness part of the dichotomy by Goldberg et al. [Leslie A. Goldberg et al., 2010] for Z_A(⋅) also holds for simple graphs, where A is any real symmetric matrix.

Cite as

Artem Govorov, Jin-Yi Cai, and Martin Dyer. A Dichotomy for Bounded Degree Graph Homomorphisms with Nonnegative Weights. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 66:1-66:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{govorov_et_al:LIPIcs.ICALP.2020.66,
  author =	{Govorov, Artem and Cai, Jin-Yi and Dyer, Martin},
  title =	{{A Dichotomy for Bounded Degree Graph Homomorphisms with Nonnegative Weights}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{66:1--66:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.66},
  URN =		{urn:nbn:de:0030-drops-124733},
  doi =		{10.4230/LIPIcs.ICALP.2020.66},
  annote =	{Keywords: Graph homomorphism, Complexity dichotomy, Counting problems}
}
  • Refine by Author
  • 1 Cai, Jin-Yi
  • 1 Carlson, Charlie
  • 1 Davies, Ewan
  • 1 Dyer, Martin
  • 1 Feng, Weiming
  • Show More...

  • Refine by Classification
  • 2 Mathematics of computing → Approximation algorithms
  • 1 Mathematics of computing → Graph algorithms
  • 1 Networks → Network reliability
  • 1 Theory of computation → Algorithm design techniques
  • 1 Theory of computation → Approximation algorithms analysis
  • Show More...

  • Refine by Keyword
  • 1 Approximate counting
  • 1 Complexity dichotomy
  • 1 Counting problems
  • 1 Graph homomorphism
  • 1 Network reliability
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 3 2024
  • 2 2020