3 Search Results for "Hallgren, Sean"


Document
Finer-Grained Hardness of Kernel Density Estimation

Authors: Josh Alman and Yunfeng Guan

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
In batch Kernel Density Estimation (KDE) for a kernel function f : ℝ^m × ℝ^m → ℝ, we are given as input 2n points x^{(1)}, …, x^{(n)}, y^{(1)}, …, y^{(n)} ∈ ℝ^m in dimension m, as well as a vector v ∈ ℝⁿ. These inputs implicitly define the n × n kernel matrix K given by K[i,j] = f(x^{(i)}, y^{(j)}). The goal is to compute a vector v ∈ ℝⁿ which approximates K w, i.e., with || Kw - v||_∞ < ε ||w||₁. For illustrative purposes, consider the Gaussian kernel f(x,y) : = e^{-||x-y||₂²}. The classic approach to this problem is the famous Fast Multipole Method (FMM), which runs in time n ⋅ O(log^m(ε^{-1})) and is particularly effective in low dimensions because of its exponential dependence on m. Recently, as the higher-dimensional case m ≥ Ω(log n) has seen more applications in machine learning and statistics, new algorithms have focused on this setting: an algorithm using discrepancy theory, which runs in time O(n / ε), and an algorithm based on the polynomial method, which achieves inverse polynomial accuracy in almost linear time when the input points have bounded square diameter B < o(log n). A recent line of work has proved fine-grained lower bounds, with the goal of showing that the "curse of dimensionality" arising in FMM is necessary assuming the Strong Exponential Time Hypothesis (SETH). Backurs et al. [NeurIPS 2017] first showed the hardness of a variety of Empirical Risk Minimization problems including KDE for Gaussian-like kernels in the case with high dimension m = Ω(log n) and large scale B = Ω(log n). Alman et al. [FOCS 2020] later developed new reductions in roughly this same parameter regime, leading to lower bounds for more general kernels, but only for very small error ε < 2^{- log^{Ω(1)} (n)}. In this paper, we refine the approach of Alman et al. to show new lower bounds in all parameter regimes, closing gaps between the known algorithms and lower bounds. For example: - In the setting where m = Clog n and B = o(log n), we prove Gaussian KDE requires n^{2-o(1)} time to achieve additive error ε < Ω(m/B)^{-m}, matching the performance of the polynomial method up to low-order terms. - In the low dimensional setting m = o(log n), we show that Gaussian KDE requires n^{2-o(1)} time to achieve ε such that log log (ε^{-1}) > ̃ Ω ((log n)/m), matching the error bound achievable by FMM up to low-order terms. To our knowledge, no nontrivial lower bound was previously known in this regime. Our approach also generalizes to any parameter regime and any kernel. For example, we achieve similar fine-grained hardness results for any kernel with slowly-decaying Taylor coefficients such as the Cauchy kernel. Our new lower bounds make use of an intricate analysis of the "counting matrix", a special case of the kernel matrix focused on carefully-chosen evaluation points. As a key technical lemma, we give a novel approach to bounding the entries of its inverse by using Schur polynomials from algebraic combinatorics.

Cite as

Josh Alman and Yunfeng Guan. Finer-Grained Hardness of Kernel Density Estimation. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 35:1-35:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alman_et_al:LIPIcs.CCC.2024.35,
  author =	{Alman, Josh and Guan, Yunfeng},
  title =	{{Finer-Grained Hardness of Kernel Density Estimation}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{35:1--35:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.35},
  URN =		{urn:nbn:de:0030-drops-204311},
  doi =		{10.4230/LIPIcs.CCC.2024.35},
  annote =	{Keywords: Kernel Density Estimation, Fine-Grained Complexity, Schur Polynomials}
}
Document
APPROX
An Approximation Algorithm for the MAX-2-Local Hamiltonian Problem

Authors: Sean Hallgren, Eunou Lee, and Ojas Parekh

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
We present a classical approximation algorithm for the MAX-2-Local Hamiltonian problem. This is a maximization version of the QMA-complete 2-Local Hamiltonian problem in quantum computing, with the additional assumption that each local term is positive semidefinite. The MAX-2-Local Hamiltonian problem generalizes NP-hard constraint satisfaction problems, and our results may be viewed as generalizations of approximation approaches for the MAX-2-CSP problem. We work in the product state space and extend the framework of Goemans and Williamson for approximating MAX-2-CSPs. The key difference is that in the product state setting, a solution consists of a set of normalized 3-dimensional vectors rather than boolean numbers, and we leverage approximation results for rank-constrained Grothendieck inequalities. For MAX-2-Local Hamiltonian we achieve an approximation ratio of 0.328. This is the first example of an approximation algorithm beating the random quantum assignment ratio of 0.25 by a constant factor.

Cite as

Sean Hallgren, Eunou Lee, and Ojas Parekh. An Approximation Algorithm for the MAX-2-Local Hamiltonian Problem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 59:1-59:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{hallgren_et_al:LIPIcs.APPROX/RANDOM.2020.59,
  author =	{Hallgren, Sean and Lee, Eunou and Parekh, Ojas},
  title =	{{An Approximation Algorithm for the MAX-2-Local Hamiltonian Problem}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{59:1--59:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.59},
  URN =		{urn:nbn:de:0030-drops-126629},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.59},
  annote =	{Keywords: approximation algorithm, quantum computing, local Hamiltonian, mean-field theory, randomized rounding}
}
Document
How Hard Is Deciding Trivial Versus Nontrivial in the Dihedral Coset Problem?

Authors: Nai-Hui Chia and Sean Hallgren

Published in: LIPIcs, Volume 61, 11th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2016)


Abstract
We study the hardness of the dihedral hidden subgroup problem. It is known that lattice problems reduce to it, and that it reduces to random subset sum with density > 1 and also to quantum sampling subset sum solutions. We examine a decision version of the problem where the question asks whether the hidden subgroup is trivial or order two. The decision problem essentially asks if a given vector is in the span of all coset states. We approach this by first computing an explicit basis for the coset space and the perpendicular space. We then look at the consequences of having efficient unitaries that use this basis. We show that if a unitary maps the basis to the standard basis in any way, then that unitary can be used to solve random subset sum with constant density >1. We also show that if a unitary can exactly decide membership in the coset subspace, then the collision problem for subset sum can be solved for density >1 but approaching 1 as the problem size increases. This strengthens the previous hardness result that implementing the optimal POVM in a specific way is as hard as quantum sampling subset sum solutions.

Cite as

Nai-Hui Chia and Sean Hallgren. How Hard Is Deciding Trivial Versus Nontrivial in the Dihedral Coset Problem?. In 11th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 61, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{chia_et_al:LIPIcs.TQC.2016.6,
  author =	{Chia, Nai-Hui and Hallgren, Sean},
  title =	{{How Hard Is Deciding Trivial Versus Nontrivial in the Dihedral Coset Problem?}},
  booktitle =	{11th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2016)},
  pages =	{6:1--6:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-019-4},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{61},
  editor =	{Broadbent, Anne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2016.6},
  URN =		{urn:nbn:de:0030-drops-66877},
  doi =		{10.4230/LIPIcs.TQC.2016.6},
  annote =	{Keywords: Quantum algorithms, hidden subgroup problem, random subset sum problem}
}
  • Refine by Author
  • 2 Hallgren, Sean
  • 1 Alman, Josh
  • 1 Chia, Nai-Hui
  • 1 Guan, Yunfeng
  • 1 Lee, Eunou
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Problems, reductions and completeness
  • 1 Theory of computation → Quantum complexity theory
  • 1 Theory of computation → Semidefinite programming

  • Refine by Keyword
  • 1 Fine-Grained Complexity
  • 1 Kernel Density Estimation
  • 1 Quantum algorithms
  • 1 Schur Polynomials
  • 1 approximation algorithm
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2016
  • 1 2020
  • 1 2024