2 Search Results for "He, Shuai"


Document
Track A: Algorithms, Complexity and Games
Contraction: A Unified Perspective of Correlation Decay and Zero-Freeness of 2-Spin Systems

Authors: Shuai Shao and Yuxin Sun

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We study complex zeros of the partition function of 2-spin systems, viewed as a multivariate polynomial in terms of the edge interaction parameters and the uniform external field. We obtain new zero-free regions in which all these parameters are complex-valued. Crucially based on the zero-freeness, we are able to extend the existence of correlation decay to these complex regions from real parameters. As a consequence, we obtain an FPTAS for computing the partition function of 2-spin systems on graphs of bounded degree for these parameter settings. We introduce the contraction property as a unified sufficient condition to devise FPTAS via either Weitz’s algorithm or Barvinok’s algorithm. Our main technical contribution is a very simple but general approach to extend any real parameter of which the 2-spin system exhibits correlation decay to its complex neighborhood where the partition function is zero-free and correlation decay still exists. This result formally establishes the inherent connection between two distinct notions of phase transition for 2-spin systems: the existence of correlation decay and the zero-freeness of the partition function via a unified perspective, contraction.

Cite as

Shuai Shao and Yuxin Sun. Contraction: A Unified Perspective of Correlation Decay and Zero-Freeness of 2-Spin Systems. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 96:1-96:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{shao_et_al:LIPIcs.ICALP.2020.96,
  author =	{Shao, Shuai and Sun, Yuxin},
  title =	{{Contraction: A Unified Perspective of Correlation Decay and Zero-Freeness of 2-Spin Systems}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{96:1--96:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.96},
  URN =		{urn:nbn:de:0030-drops-125036},
  doi =		{10.4230/LIPIcs.ICALP.2020.96},
  annote =	{Keywords: 2-Spin system, Correlation decay, Zero-freeness, Phase transition, Contraction}
}
Document
Short Paper
Multimodal-Transport Collaborative Evacuation Strategies for Urban Serious Emergency Incidents Based on Multi-Sources Spatiotemporal Data (Short Paper)

Authors: Jincheng Jiang, Yang Yue, and Shuai He

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
When serious emergency events happen in metropolitan cities where pedestrians and vehicles are in high-density, single modal-transport cannot meet the requirements of quick evacuations. Existing mixed modes of transportation lacks spatiotemporal collaborative ability, which cannot work together to accomplish evacuation tasks in a safe and efficient way. It is of great scientific significance and application value for emergency response to adopt multimodal-transport evacuations and improve their spatial-temporal collaboration ability. However, multimodal-transport evacuation strategies for urban serious emergency event are great challenge to be solved. The reasons lie in that: (1) large-scale urban emergency environment are extremely complicated involving many geographical elements (e.g., road, buildings, over-pass, square, hydrographic net, etc.); (2) Evacuated objects are dynamic and hard to be predicted. (3) the distributions of pedestrians and vehicles are unknown. To such issues, this paper reveals both collaborative and competitive mechanisms of multimodal-transport, and further makes global optimal evacuation strategies from the macro-optimization perspective. Considering detailed geographical environment, pedestrian, vehicle and urban rail transit, a multi-objective multi-dynamic-constraints optimization model for multimodal-transport collaborative emergency evacuation is constructed. Take crowd incidents in Shenzhen as example, empirical experiments with real-world data are conducted to evaluate the evacuation strategies and path planning. It is expected to obtain innovative research achievements on theory and method of urban emergency evacuation in serious emergency events. Moreover, this research results provide spatial-temporal decision support for urban emergency response, which is benefit to constructing smart and safe cities.

Cite as

Jincheng Jiang, Yang Yue, and Shuai He. Multimodal-Transport Collaborative Evacuation Strategies for Urban Serious Emergency Incidents Based on Multi-Sources Spatiotemporal Data (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 35:1-35:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{jiang_et_al:LIPIcs.GISCIENCE.2018.35,
  author =	{Jiang, Jincheng and Yue, Yang and He, Shuai},
  title =	{{Multimodal-Transport Collaborative Evacuation Strategies for Urban Serious Emergency Incidents Based on Multi-Sources Spatiotemporal Data}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{35:1--35:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.35},
  URN =		{urn:nbn:de:0030-drops-93630},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.35},
  annote =	{Keywords: evacuation, multimodal-transport, path planning, disaster system modeling, time geography}
}
  • Refine by Author
  • 1 He, Shuai
  • 1 Jiang, Jincheng
  • 1 Shao, Shuai
  • 1 Sun, Yuxin
  • 1 Yue, Yang

  • Refine by Classification
  • 1 Computing methodologies → Modeling and simulation
  • 1 Mathematics of computing → Approximation algorithms

  • Refine by Keyword
  • 1 2-Spin system
  • 1 Contraction
  • 1 Correlation decay
  • 1 Phase transition
  • 1 Zero-freeness
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2018
  • 1 2020