8 Search Results for "Hirsch, Benjamin"


Document
Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling (Dagstuhl Seminar 22382)

Authors: Philipp Berens, Kyle Cranmer, Neil D. Lawrence, Ulrike von Luxburg, and Jessica Montgomery

Published in: Dagstuhl Reports, Volume 12, Issue 9 (2023)


Abstract
This report documents the programme and the outcomes of Dagstuhl Seminar 22382 "Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling". Today’s scientific challenges are characterised by complexity. Interconnected natural, technological, and human systems are influenced by forces acting across time- and spatial-scales, resulting in complex interactions and emergent behaviours. Understanding these phenomena - and leveraging scientific advances to deliver innovative solutions to improve society’s health, wealth, and well-being - requires new ways of analysing complex systems. The transformative potential of AI stems from its widespread applicability across disciplines, and will only be achieved through integration across research domains. AI for science is a rendezvous point. It brings together expertise from AI and application domains; combines modelling knowledge with engineering know-how; and relies on collaboration across disciplines and between humans and machines. Alongside technical advances, the next wave of progress in the field will come from building a community of machine learning researchers, domain experts, citizen scientists, and engineers working together to design and deploy effective AI tools. This report summarises the discussions from the seminar and provides a roadmap to suggest how different communities can collaborate to deliver a new wave of progress in AI and its application for scientific discovery.

Cite as

Philipp Berens, Kyle Cranmer, Neil D. Lawrence, Ulrike von Luxburg, and Jessica Montgomery. Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling (Dagstuhl Seminar 22382). In Dagstuhl Reports, Volume 12, Issue 9, pp. 150-199, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{berens_et_al:DagRep.12.9.150,
  author =	{Berens, Philipp and Cranmer, Kyle and Lawrence, Neil D. and von Luxburg, Ulrike and Montgomery, Jessica},
  title =	{{Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling (Dagstuhl Seminar 22382)}},
  pages =	{150--199},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2023},
  volume =	{12},
  number =	{9},
  editor =	{Berens, Philipp and Cranmer, Kyle and Lawrence, Neil D. and von Luxburg, Ulrike and Montgomery, Jessica},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.12.9.150},
  URN =		{urn:nbn:de:0030-drops-178125},
  doi =		{10.4230/DagRep.12.9.150},
  annote =	{Keywords: machine learning, artificial intelligence, life sciences, physical sciences, environmental sciences, simulation, causality, modelling}
}
Document
Utilizing Constraint Optimization for Industrial Machine Workload Balancing

Authors: Benjamin Kovács, Pierre Tassel, Wolfgang Kohlenbrein, Philipp Schrott-Kostwein, and Martin Gebser

Published in: LIPIcs, Volume 210, 27th International Conference on Principles and Practice of Constraint Programming (CP 2021)


Abstract
Efficient production scheduling is an important application area of constraint-based optimization techniques. Problem domains like flow- and job-shop scheduling have been extensive study targets, and solving approaches range from complete and local search to machine learning methods. In this paper, we devise and compare constraint-based optimization techniques for scheduling specialized manufacturing processes in the build-to-print business. The goal is to allocate production equipment such that customer orders are completed in time as good as possible, while respecting machine capacities and minimizing extra shifts required to resolve bottlenecks. To this end, we furnish several approaches for scheduling pending production tasks to one or more workdays for performing them. First, we propose a greedy custom algorithm that allows for quickly screening the effects of altering resource demands and availabilities. Moreover, we take advantage of such greedy solutions to parameterize and warm-start the optimization performed by integer linear programming (ILP) and constraint programming (CP) solvers on corresponding problem formulations. Our empirical evaluation is based on production data by Kostwein Holding GmbH, a worldwide supplier in the build-to-print business, and thus demonstrates the industrial applicability of our scheduling methods. We also present a user-friendly web interface for feeding the underlying solvers with customer order and equipment data, graphically displaying computed schedules, and facilitating the investigation of changed resource demands and availabilities, e.g., due to updating orders or including extra shifts.

Cite as

Benjamin Kovács, Pierre Tassel, Wolfgang Kohlenbrein, Philipp Schrott-Kostwein, and Martin Gebser. Utilizing Constraint Optimization for Industrial Machine Workload Balancing. In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 210, pp. 36:1-36:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kovacs_et_al:LIPIcs.CP.2021.36,
  author =	{Kov\'{a}cs, Benjamin and Tassel, Pierre and Kohlenbrein, Wolfgang and Schrott-Kostwein, Philipp and Gebser, Martin},
  title =	{{Utilizing Constraint Optimization for Industrial Machine Workload Balancing}},
  booktitle =	{27th International Conference on Principles and Practice of Constraint Programming (CP 2021)},
  pages =	{36:1--36:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-211-2},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{210},
  editor =	{Michel, Laurent D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.36},
  URN =		{urn:nbn:de:0030-drops-153276},
  doi =		{10.4230/LIPIcs.CP.2021.36},
  annote =	{Keywords: application, production planning, production scheduling, linear programming, constraint programming, greedy algorithm, benchmarking}
}
Document
Weighted Tiling Systems for Graphs: Evaluation Complexity

Authors: C. Aiswarya and Paul Gastin

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
We consider weighted tiling systems to represent functions from graphs to a commutative semiring such as the Natural semiring or the Tropical semiring. The system labels the nodes of a graph by its states, and checks if the neighbourhood of every node belongs to a set of permissible tiles, and assigns a weight accordingly. The weight of a labeling is the semiring-product of the weights assigned to the nodes, and the weight of the graph is the semiring-sum of the weights of labelings. We show that we can model interesting algorithmic questions using this formalism - like computing the clique number of a graph or computing the permanent of a matrix. The evaluation problem is, given a weighted tiling system and a graph, to compute the weight of the graph. We study the complexity of the evaluation problem and give tight upper and lower bounds for several commutative semirings. Further we provide an efficient evaluation algorithm if the input graph is of bounded tree-width.

Cite as

C. Aiswarya and Paul Gastin. Weighted Tiling Systems for Graphs: Evaluation Complexity. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 34:1-34:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aiswarya_et_al:LIPIcs.FSTTCS.2020.34,
  author =	{Aiswarya, C. and Gastin, Paul},
  title =	{{Weighted Tiling Systems for Graphs: Evaluation Complexity}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{34:1--34:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.34},
  URN =		{urn:nbn:de:0030-drops-132753},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.34},
  annote =	{Keywords: Weighted graph tiling, tiling automata, Evaluation, Complexity, Tree-width}
}
Document
Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling

Authors: Susanna F. de Rezende, Jakob Nordström, Or Meir, and Robert Robere

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
We establish an exactly tight relation between reversible pebblings of graphs and Nullstellensatz refutations of pebbling formulas, showing that a graph G can be reversibly pebbled in time t and space s if and only if there is a Nullstellensatz refutation of the pebbling formula over G in size t+1 and degree s (independently of the field in which the Nullstellensatz refutation is made). We use this correspondence to prove a number of strong size-degree trade-offs for Nullstellensatz, which to the best of our knowledge are the first such results for this proof system.

Cite as

Susanna F. de Rezende, Jakob Nordström, Or Meir, and Robert Robere. Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 18:1-18:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{derezende_et_al:LIPIcs.CCC.2019.18,
  author =	{de Rezende, Susanna F. and Nordstr\"{o}m, Jakob and Meir, Or and Robere, Robert},
  title =	{{Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{18:1--18:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.18},
  URN =		{urn:nbn:de:0030-drops-108403},
  doi =		{10.4230/LIPIcs.CCC.2019.18},
  annote =	{Keywords: proof complexity, Nullstellensatz, pebble games, trade-offs, size, degree}
}
Document
A Tour of Gallifrey, a Language for Geodistributed Programming

Authors: Mae Milano, Rolph Recto, Tom Magrino, and Andrew C. Myers

Published in: LIPIcs, Volume 136, 3rd Summit on Advances in Programming Languages (SNAPL 2019)


Abstract
Programming efficient distributed, concurrent systems requires new abstractions that go beyond traditional sequential programming. But programmers already have trouble getting sequential code right, so simplicity is essential. The core problem is that low-latency, high-availability access to data requires replication of mutable state. Keeping replicas fully consistent is expensive, so the question is how to expose asynchronously replicated objects to programmers in a way that allows them to reason simply about their code. We propose an answer to this question in our ongoing work designing a new language, Gallifrey, which provides orthogonal replication through _restrictions_ with _merge strategies_, _contingencies_ for conflicts arising from concurrency, and _branches_, a novel concurrency control construct inspired by version control, to contain provisional behavior.

Cite as

Mae Milano, Rolph Recto, Tom Magrino, and Andrew C. Myers. A Tour of Gallifrey, a Language for Geodistributed Programming. In 3rd Summit on Advances in Programming Languages (SNAPL 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 136, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{milano_et_al:LIPIcs.SNAPL.2019.11,
  author =	{Milano, Mae and Recto, Rolph and Magrino, Tom and Myers, Andrew C.},
  title =	{{A Tour of Gallifrey, a Language for Geodistributed Programming}},
  booktitle =	{3rd Summit on Advances in Programming Languages (SNAPL 2019)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-113-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{136},
  editor =	{Lerner, Benjamin S. and Bod{\'\i}k, Rastislav and Krishnamurthi, Shriram},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2019.11},
  URN =		{urn:nbn:de:0030-drops-105549},
  doi =		{10.4230/LIPIcs.SNAPL.2019.11},
  annote =	{Keywords: programming languages, distributed systems, weak consistency, linear types}
}
Document
Strong ETH and Resolution via Games and the Multiplicity of Strategies

Authors: Ilario Bonacina and Navid Talebanfard

Published in: LIPIcs, Volume 43, 10th International Symposium on Parameterized and Exact Computation (IPEC 2015)


Abstract
We consider a restriction of the Resolution proof system in which at most a fixed number of variables can be resolved more than once along each refutation path. This system lies between regular Resolution, in which no variable can be resolved more than once along any path, and general Resolution where there is no restriction on the number of such variables. We show that when the number of re-resolved variables is not too large, this proof system is consistent with the Strong Exponential Time Hypothesis (SETH). More precisely for large n and k we show that there are unsatisfiable k-CNF formulas which require Resolution refutations of size 2^{(1 - epsilon_k)n}, where n is the number of variables and epsilon_k=~O(k^{-1/5}), whenever in each refutation path we only allow at most ~O(k^{-1/5})n variables to be resolved multiple times. However, these re-resolved variables along different paths do not need to be the same. Prior to this work, the strongest proof system shown to be consistent with SETH was regular Resolution [Beck and Impagliazzo, STOC'13]. This work strengthens that result and gives a different and conceptually simpler game-theoretic proof for the case of regular Resolution.

Cite as

Ilario Bonacina and Navid Talebanfard. Strong ETH and Resolution via Games and the Multiplicity of Strategies. In 10th International Symposium on Parameterized and Exact Computation (IPEC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 43, pp. 248-257, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{bonacina_et_al:LIPIcs.IPEC.2015.248,
  author =	{Bonacina, Ilario and Talebanfard, Navid},
  title =	{{Strong ETH and Resolution via Games and the Multiplicity of Strategies}},
  booktitle =	{10th International Symposium on Parameterized and Exact Computation (IPEC 2015)},
  pages =	{248--257},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-92-7},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{43},
  editor =	{Husfeldt, Thore and Kanj, Iyad},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2015.248},
  URN =		{urn:nbn:de:0030-drops-55876},
  doi =		{10.4230/LIPIcs.IPEC.2015.248},
  annote =	{Keywords: Strong Exponential Time Hypothesis, resolution, proof systems}
}
Document
On the Shadow Simplex Method for Curved Polyhedra

Authors: Daniel Dadush and Nicolai Hähnle

Published in: LIPIcs, Volume 34, 31st International Symposium on Computational Geometry (SoCG 2015)


Abstract
We study the simplex method over polyhedra satisfying certain "discrete curvature" lower bounds, which enforce that the boundary always meets vertices at sharp angles. Motivated by linear programs with totally unimodular constraint matrices, recent results of Bonifas et al. (SOCG 2012), Brunsch and Röglin (ICALP 2013), and Eisenbrand and Vempala (2014) have improved our understanding of such polyhedra. We develop a new type of dual analysis of the shadow simplex method which provides a clean and powerful tool for improving all previously mentioned results. Our methods are inspired by the recent work of Bonifas and the first named author, who analyzed a remarkably similar process as part of an algorithm for the Closest Vector Problem with Preprocessing. For our first result, we obtain a constructive diameter bound of O((n^2 / delta) ln (n / delta)) for n-dimensional polyhedra with curvature parameter delta in (0, 1]. For the class of polyhedra arising from totally unimodular constraint matrices, this implies a bound of O(n^3 ln n). For linear optimization, given an initial feasible vertex, we show that an optimal vertex can be found using an expected O((n^3 / delta) ln (n / delta)) simplex pivots, each requiring O(mn) time to compute. An initial feasible solution can be found using O((mn^3 / delta) ln (n / delta)) pivot steps.

Cite as

Daniel Dadush and Nicolai Hähnle. On the Shadow Simplex Method for Curved Polyhedra. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 345-359, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{dadush_et_al:LIPIcs.SOCG.2015.345,
  author =	{Dadush, Daniel and H\"{a}hnle, Nicolai},
  title =	{{On the Shadow Simplex Method for Curved Polyhedra}},
  booktitle =	{31st International Symposium on Computational Geometry (SoCG 2015)},
  pages =	{345--359},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-83-5},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{34},
  editor =	{Arge, Lars and Pach, J\'{a}nos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.345},
  URN =		{urn:nbn:de:0030-drops-51142},
  doi =		{10.4230/LIPIcs.SOCG.2015.345},
  annote =	{Keywords: Optimization, Linear Programming, Simplex Method, Diameter of Polyhedra}
}
Document
Programming Service Oriented Agents

Authors: Benjamin Hirsch, Thomas Konnerth, Michael Burkhardt, and Sahin Albayrak

Published in: Dagstuhl Seminar Proceedings, Volume 10021, Service-Oriented Architecture and (Multi-)Agent Systems Technology (2010)


Abstract
This paper introduces a programming language for service-oriented agents. JADL++ combines the ease of use of scripting-languages with a state-of-the-art service oriented approach which allows the seamless integration of web-services. Furthermore, the language includes OWL-based ontologies for semantic descriptions of data and services, thus allowing agents to make intelligent decisions about service calls.

Cite as

Benjamin Hirsch, Thomas Konnerth, Michael Burkhardt, and Sahin Albayrak. Programming Service Oriented Agents. In Service-Oriented Architecture and (Multi-)Agent Systems Technology. Dagstuhl Seminar Proceedings, Volume 10021, pp. 1-16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{hirsch_et_al:DagSemProc.10021.5,
  author =	{Hirsch, Benjamin and Konnerth, Thomas and Burkhardt, Michael and Albayrak, Sahin},
  title =	{{Programming Service Oriented Agents}},
  booktitle =	{Service-Oriented Architecture and (Multi-)Agent Systems Technology},
  pages =	{1--16},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10021},
  editor =	{Monique Calisti and Frank P. Dignum and Ryszard Kowalczyk and Frank Leymann and Rainer Unland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10021.5},
  URN =		{urn:nbn:de:0030-drops-28158},
  doi =		{10.4230/DagSemProc.10021.5},
  annote =	{Keywords: Service oriented architectures, agents, agent programming language, semantic services}
}
  • Refine by Author
  • 1 Aiswarya, C.
  • 1 Albayrak, Sahin
  • 1 Berens, Philipp
  • 1 Bonacina, Ilario
  • 1 Burkhardt, Michael
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Command and control
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Machine learning
  • 1 Software and its engineering → Cooperating communicating processes
  • 1 Software and its engineering → Distributed programming languages
  • Show More...

  • Refine by Keyword
  • 1 Complexity
  • 1 Diameter of Polyhedra
  • 1 Evaluation
  • 1 Linear Programming
  • 1 Nullstellensatz
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 2 2015
  • 2 2019
  • 1 2010
  • 1 2020
  • 1 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail