1 Search Results for "Hossain, Akash"


Document
From Quantified CTL to QBF

Authors: Akash Hossain and François Laroussinie

Published in: LIPIcs, Volume 147, 26th International Symposium on Temporal Representation and Reasoning (TIME 2019)


Abstract
QCTL extends the temporal logic CTL with quantifications over atomic propositions. This extension is known to be very expressive: QCTL allows us to express complex properties over Kripke structures (it is as expressive as MSO). Several semantics exist for the quantifications: here, we work with the structure semantics, where the extra propositions label the Kripke structure (and not its execution tree), and the model-checking problem is known to be PSPACE-complete in this framework. We propose a model-checking algorithm for QCTL based on a reduction to QBF. We consider several reduction strategies, and we compare them with a prototype (based on the SMT-solver Z3) on several examples.

Cite as

Akash Hossain and François Laroussinie. From Quantified CTL to QBF. In 26th International Symposium on Temporal Representation and Reasoning (TIME 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 147, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{hossain_et_al:LIPIcs.TIME.2019.11,
  author =	{Hossain, Akash and Laroussinie, Fran\c{c}ois},
  title =	{{From Quantified CTL to QBF}},
  booktitle =	{26th International Symposium on Temporal Representation and Reasoning (TIME 2019)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-127-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{147},
  editor =	{Gamper, Johann and Pinchinat, Sophie and Sciavicco, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2019.11},
  URN =		{urn:nbn:de:0030-drops-113699},
  doi =		{10.4230/LIPIcs.TIME.2019.11},
  annote =	{Keywords: Model-checking, Quantified CTL, QBF solvers, SAT based model-checking}
}
  • Refine by Author
  • 1 Hossain, Akash
  • 1 Laroussinie, François

  • Refine by Classification
  • 1 Theory of computation → Logic and verification
  • 1 Theory of computation → Modal and temporal logics
  • 1 Theory of computation → Verification by model checking

  • Refine by Keyword
  • 1 Model-checking
  • 1 QBF solvers
  • 1 Quantified CTL
  • 1 SAT based model-checking

  • Refine by Type
  • 1 document

  • Refine by Publication Year
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail