3 Search Results for "Kontopoulos, Ioannis"


Document
Short Paper
Towards Formalizing Concept Drift and Its Variants: A Case Study Using Past COSIT Proceedings (Short Paper)

Authors: Meilin Shi, Krzysztof Janowicz, Zilong Liu, and Kitty Currier

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
In the classic Philosophical Investigations, Ludwig Wittgenstein suggests that the meaning of words is rooted in their use in ordinary language, challenging the idea of fixed rules determining the meaning of words. Likewise, we believe that the meaning of keywords and concepts in academic papers is shaped by their usage within the articles and evolves as research progresses. For example, the terms natural hazards and natural disasters were once used interchangeably, but this is rarely the case today. When searching for archived documents, such as those related to disaster relief, choosing the appropriate keyword is crucial and requires a deeper understanding of the historical context. To improve interoperability and promote reusability from a Research Data Management (RDM) perspective, we examine the dynamic nature of concepts, providing formal definitions of concept drift and its variants. By employing a case study of past COSIT (Conference on Spatial Information Theory) proceedings to support these definitions, we argue that a quantitative formalization can help systematically detect subsequent changes and enhance the overall interpretation of concepts.

Cite as

Meilin Shi, Krzysztof Janowicz, Zilong Liu, and Kitty Currier. Towards Formalizing Concept Drift and Its Variants: A Case Study Using Past COSIT Proceedings (Short Paper). In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 23:1-23:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{shi_et_al:LIPIcs.COSIT.2024.23,
  author =	{Shi, Meilin and Janowicz, Krzysztof and Liu, Zilong and Currier, Kitty},
  title =	{{Towards Formalizing Concept Drift and Its Variants: A Case Study Using Past COSIT Proceedings}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{23:1--23:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.23},
  URN =		{urn:nbn:de:0030-drops-208386},
  doi =		{10.4230/LIPIcs.COSIT.2024.23},
  annote =	{Keywords: Concept Drift, Semantic Aging, Research Data Management}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
A Stream Reasoning System for Maritime Monitoring

Authors: Georgios M. Santipantakis, Akrivi Vlachou, Christos Doulkeridis, Alexander Artikis, Ioannis Kontopoulos, and George A. Vouros

Published in: LIPIcs, Volume 120, 25th International Symposium on Temporal Representation and Reasoning (TIME 2018)


Abstract
We present a stream reasoning system for monitoring vessel activity in large geographical areas. The system ingests a compressed vessel position stream, and performs online spatio-temporal link discovery to calculate proximity relations between vessels, and topological relations between vessel and static areas. Capitalizing on the discovered relations, a complex activity recognition engine, based on the Event Calculus, performs continuous pattern matching to detect various types of dangerous, suspicious and potentially illegal vessel activity. We evaluate the performance of the system by means of real datasets including kinematic messages from vessels, and demonstrate the effects of the highly efficient spatio-temporal link discovery on performance.

Cite as

Georgios M. Santipantakis, Akrivi Vlachou, Christos Doulkeridis, Alexander Artikis, Ioannis Kontopoulos, and George A. Vouros. A Stream Reasoning System for Maritime Monitoring. In 25th International Symposium on Temporal Representation and Reasoning (TIME 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 120, pp. 20:1-20:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{santipantakis_et_al:LIPIcs.TIME.2018.20,
  author =	{Santipantakis, Georgios M. and Vlachou, Akrivi and Doulkeridis, Christos and Artikis, Alexander and Kontopoulos, Ioannis and Vouros, George A.},
  title =	{{A Stream Reasoning System for Maritime Monitoring}},
  booktitle =	{25th International Symposium on Temporal Representation and Reasoning (TIME 2018)},
  pages =	{20:1--20:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-089-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{120},
  editor =	{Alechina, Natasha and N{\o}rv\r{a}g, Kjetil and Penczek, Wojciech},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2018.20},
  URN =		{urn:nbn:de:0030-drops-97858},
  doi =		{10.4230/LIPIcs.TIME.2018.20},
  annote =	{Keywords: event pattern matching, Event Calculus}
}
  • Refine by Author
  • 1 Artikis, Alexander
  • 1 Bonte, Pieter
  • 1 Calbimonte, Jean-Paul
  • 1 Currier, Kitty
  • 1 Dell'Aglio, Daniele
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Activity recognition and understanding
  • 1 Computing methodologies → Description logics
  • 1 Computing methodologies → Information extraction
  • 1 Computing methodologies → Temporal reasoning
  • 1 Information systems → Data streams
  • Show More...

  • Refine by Keyword
  • 1 Concept Drift
  • 1 Continuous query processing
  • 1 Databases
  • 1 Event Calculus
  • 1 High-performance computing
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail