Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)
Prahladh Harsha, Tulasimohan Molli, and Ashutosh Shankar. Criticality of AC⁰-Formulae. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 19:1-19:24, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)
@InProceedings{harsha_et_al:LIPIcs.CCC.2023.19, author = {Harsha, Prahladh and Molli, Tulasimohan and Shankar, Ashutosh}, title = {{Criticality of AC⁰-Formulae}}, booktitle = {38th Computational Complexity Conference (CCC 2023)}, pages = {19:1--19:24}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-282-2}, ISSN = {1868-8969}, year = {2023}, volume = {264}, editor = {Ta-Shma, Amnon}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.19}, URN = {urn:nbn:de:0030-drops-182898}, doi = {10.4230/LIPIcs.CCC.2023.19}, annote = {Keywords: AC⁰ circuits, AC⁰ formulae, criticality, switching lemma, correlation bounds} }
Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)
Sourav Chakraborty, Nikhil S. Mande, Rajat Mittal, Tulasimohan Molli, Manaswi Paraashar, and Swagato Sanyal. Tight Chang’s-Lemma-Type Bounds for Boolean Functions. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 10:1-10:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)
@InProceedings{chakraborty_et_al:LIPIcs.FSTTCS.2021.10, author = {Chakraborty, Sourav and Mande, Nikhil S. and Mittal, Rajat and Molli, Tulasimohan and Paraashar, Manaswi and Sanyal, Swagato}, title = {{Tight Chang’s-Lemma-Type Bounds for Boolean Functions}}, booktitle = {41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)}, pages = {10:1--10:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-215-0}, ISSN = {1868-8969}, year = {2021}, volume = {213}, editor = {Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.10}, URN = {urn:nbn:de:0030-drops-155215}, doi = {10.4230/LIPIcs.FSTTCS.2021.10}, annote = {Keywords: Analysis of Boolean functions, Chang’s lemma, Parity decision trees, Fourier dimension} }
Published in: LIPIcs, Volume 122, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)
Siddharth Bhandari, Prahladh Harsha, Tulasimohan Molli, and Srikanth Srinivasan. On the Probabilistic Degree of OR over the Reals. In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 122, pp. 5:1-5:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)
@InProceedings{bhandari_et_al:LIPIcs.FSTTCS.2018.5, author = {Bhandari, Siddharth and Harsha, Prahladh and Molli, Tulasimohan and Srinivasan, Srikanth}, title = {{On the Probabilistic Degree of OR over the Reals}}, booktitle = {38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)}, pages = {5:1--5:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-093-4}, ISSN = {1868-8969}, year = {2018}, volume = {122}, editor = {Ganguly, Sumit and Pandya, Paritosh}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2018.5}, URN = {urn:nbn:de:0030-drops-99044}, doi = {10.4230/LIPIcs.FSTTCS.2018.5}, annote = {Keywords: Polynomials over reals, probabilistic polynomials, probabilistic degree, OR polynomial} }
Feedback for Dagstuhl Publishing