3 Search Results for "Nguyen, Austin"


Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Quantum Pseudoentanglement

Authors: Scott Aaronson, Adam Bouland, Bill Fefferman, Soumik Ghosh, Umesh Vazirani, Chenyi Zhang, and Zixin Zhou

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Entanglement is a quantum resource, in some ways analogous to randomness in classical computation. Inspired by recent work of Gheorghiu and Hoban, we define the notion of "pseudoentanglement", a property exhibited by ensembles of efficiently constructible quantum states which are indistinguishable from quantum states with maximal entanglement. Our construction relies on the notion of quantum pseudorandom states - first defined by Ji, Liu and Song - which are efficiently constructible states indistinguishable from (maximally entangled) Haar-random states. Specifically, we give a construction of pseudoentangled states with entanglement entropy arbitrarily close to log n across every cut, a tight bound providing an exponential separation between computational vs information theoretic quantum pseudorandomness. We discuss applications of this result to Matrix Product State testing, entanglement distillation, and the complexity of the AdS/CFT correspondence. As compared with a previous version of this manuscript (arXiv:2211.00747v1) this version introduces a new pseudorandom state construction, has a simpler proof of correctness, and achieves a technically stronger result of low entanglement across all cuts simultaneously.

Cite as

Scott Aaronson, Adam Bouland, Bill Fefferman, Soumik Ghosh, Umesh Vazirani, Chenyi Zhang, and Zixin Zhou. Quantum Pseudoentanglement. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 2:1-2:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aaronson_et_al:LIPIcs.ITCS.2024.2,
  author =	{Aaronson, Scott and Bouland, Adam and Fefferman, Bill and Ghosh, Soumik and Vazirani, Umesh and Zhang, Chenyi and Zhou, Zixin},
  title =	{{Quantum Pseudoentanglement}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{2:1--2:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.2},
  URN =		{urn:nbn:de:0030-drops-195300},
  doi =		{10.4230/LIPIcs.ITCS.2024.2},
  annote =	{Keywords: Quantum computing, Quantum complexity theory, entanglement}
}
Document
An Invertible Transform for Efficient String Matching in Labeled Digraphs

Authors: Abhinav Nellore, Austin Nguyen, and Reid F. Thompson

Published in: LIPIcs, Volume 191, 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)


Abstract
Let G = (V, E) be a digraph where each vertex is unlabeled, each edge is labeled by a character in some alphabet Ω, and any two edges with both the same head and the same tail have different labels. The powerset construction gives a transform of G into a weakly connected digraph G' = (V', E') that enables solving the decision problem of whether there is a walk in G matching an arbitrarily long query string q in time linear in |q| and independent of |E| and |V|. We show G is uniquely determined by G' when for every v_𝓁 ∈ V, there is some distinct string s_𝓁 on Ω such that v_𝓁 is the origin of a closed walk in G matching s_𝓁, and no other walk in G matches s_𝓁 unless it starts and ends at v_𝓁. We then exploit this invertibility condition to strategically alter any G so its transform G' enables retrieval of all t terminal vertices of walks in the unaltered G matching q in O(|q| + t log |V|) time. We conclude by proposing two defining properties of a class of transforms that includes the Burrows-Wheeler transform and the transform presented here.

Cite as

Abhinav Nellore, Austin Nguyen, and Reid F. Thompson. An Invertible Transform for Efficient String Matching in Labeled Digraphs. In 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 191, pp. 20:1-20:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{nellore_et_al:LIPIcs.CPM.2021.20,
  author =	{Nellore, Abhinav and Nguyen, Austin and Thompson, Reid F.},
  title =	{{An Invertible Transform for Efficient String Matching in Labeled Digraphs}},
  booktitle =	{32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)},
  pages =	{20:1--20:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-186-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{191},
  editor =	{Gawrychowski, Pawe{\l} and Starikovskaya, Tatiana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2021.20},
  URN =		{urn:nbn:de:0030-drops-139717},
  doi =		{10.4230/LIPIcs.CPM.2021.20},
  annote =	{Keywords: pattern matching, string matching, Burrows-Wheeler transform, labeled graphs}
}
  • Refine by Author
  • 1 Aaronson, Scott
  • 1 Bonte, Pieter
  • 1 Bouland, Adam
  • 1 Calbimonte, Jean-Paul
  • 1 Dell'Aglio, Daniele
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Description logics
  • 1 Computing methodologies → Temporal reasoning
  • 1 Information systems → Data streams
  • 1 Information systems → Graph-based database models
  • 1 Information systems → Query languages for non-relational engines
  • Show More...

  • Refine by Keyword
  • 1 Burrows-Wheeler transform
  • 1 Continuous query processing
  • 1 Databases
  • 1 High-performance computing
  • 1 Quantum complexity theory
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail