3 Search Results for "Overbeek, Roy"


Document
Left-Linear Rewriting in Adhesive Categories

Authors: Paolo Baldan, Davide Castelnovo, Andrea Corradini, and Fabio Gadducci

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
When can two sequential steps performed by a computing device be considered (causally) independent? This is a relevant question for concurrent and distributed systems, since independence means that they could be executed in any order, and potentially in parallel. Equivalences identifying rewriting sequences which differ only for independent steps are at the core of the theory of concurrency of many formalisms. We investigate the issue in the context of the double pushout approach to rewriting in the general setting of adhesive categories. While a consolidated theory exists for linear rules, which can consume, preserve and generate entities, this paper focuses on left-linear rules which may also "merge" parts of the state. This is an apparently minimal, yet technically hard enhancement, since a standard characterisation of independence that - in the linear case - allows one to derive a number of properties, essential in the development of a theory of concurrency, no longer holds. The paper performs an in-depth study of the notion of independence for left-linear rules: it introduces a novel characterisation of independence, identifies well-behaved classes of left-linear rewriting systems, and provides some fundamental results including a Church-Rosser property and the existence of canonical equivalence proofs for concurrent computations. These results properly extends the class of formalisms that can be modelled in the adhesive framework.

Cite as

Paolo Baldan, Davide Castelnovo, Andrea Corradini, and Fabio Gadducci. Left-Linear Rewriting in Adhesive Categories. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 11:1-11:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baldan_et_al:LIPIcs.CONCUR.2024.11,
  author =	{Baldan, Paolo and Castelnovo, Davide and Corradini, Andrea and Gadducci, Fabio},
  title =	{{Left-Linear Rewriting in Adhesive Categories}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{11:1--11:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.11},
  URN =		{urn:nbn:de:0030-drops-207835},
  doi =		{10.4230/LIPIcs.CONCUR.2024.11},
  annote =	{Keywords: Adhesive categories, double-pushout rewriting, left-linear rules, switch equivalence, local Church-Rosser property}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Decreasing Diagrams with Two Labels Are Complete for Confluence of Countable Systems

Authors: Jörg Endrullis, Jan Willem Klop, and Roy Overbeek

Published in: LIPIcs, Volume 108, 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018)


Abstract
Like termination, confluence is a central property of rewrite systems. Unlike for termination, however, there exists no known complexity hierarchy for confluence. In this paper we investigate whether the decreasing diagrams technique can be used to obtain such a hierarchy. The decreasing diagrams technique is one of the strongest and most versatile methods for proving confluence of abstract reduction systems, it is complete for countable systems, and it has many well-known confluence criteria as corollaries. So what makes decreasing diagrams so powerful? In contrast to other confluence techniques, decreasing diagrams employ a labelling of the steps -> with labels from a well-founded order in order to conclude confluence of the underlying unlabelled relation. Hence it is natural to ask how the size of the label set influences the strength of the technique. In particular, what class of abstract reduction systems can be proven confluent using decreasing diagrams restricted to 1 label, 2 labels, 3 labels, and so on? Surprisingly, we find that two labels suffice for proving confluence for every abstract rewrite system having the cofinality property, thus in particular for every confluent, countable system. We also show that this result stands in sharp contrast to the situation for commutation of rewrite relations, where the hierarchy does not collapse. Finally, as a background theme, we discuss the logical issue of first-order definability of the notion of confluence.

Cite as

Jörg Endrullis, Jan Willem Klop, and Roy Overbeek. Decreasing Diagrams with Two Labels Are Complete for Confluence of Countable Systems. In 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 108, pp. 14:1-14:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{endrullis_et_al:LIPIcs.FSCD.2018.14,
  author =	{Endrullis, J\"{o}rg and Klop, Jan Willem and Overbeek, Roy},
  title =	{{Decreasing Diagrams with Two Labels Are Complete for Confluence of Countable Systems}},
  booktitle =	{3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018)},
  pages =	{14:1--14:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-077-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{108},
  editor =	{Kirchner, H\'{e}l\`{e}ne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2018.14},
  URN =		{urn:nbn:de:0030-drops-91848},
  doi =		{10.4230/LIPIcs.FSCD.2018.14},
  annote =	{Keywords: confluence, decreasing diagrams, weak diamond property}
}
  • Refine by Author
  • 1 Baldan, Paolo
  • 1 Castelnovo, Davide
  • 1 Corradini, Andrea
  • 1 Delgrande, James P.
  • 1 Endrullis, Jörg
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Semantics and reasoning
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Information systems → Information integration
  • 1 Theory of computation → Complexity theory and logic
  • Show More...

  • Refine by Keyword
  • 1 Adhesive categories
  • 1 Applications of logics
  • 1 Declarative representations
  • 1 Formal logic
  • 1 Knowledge representation and reasoning
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail