Left-Linear Rewriting in Adhesive Categories

Authors Paolo Baldan , Davide Castelnovo , Andrea Corradini , Fabio Gadducci



PDF
Thumbnail PDF

File

LIPIcs.CONCUR.2024.11.pdf
  • Filesize: 0.89 MB
  • 24 pages

Document Identifiers

Author Details

Paolo Baldan
  • Department of Mathematics, University of Padua, Italy
Davide Castelnovo
  • Department of Mathematics, University of Padua, Italy
Andrea Corradini
  • Department of Computer Science, University of Pisa, Italy
Fabio Gadducci
  • Department of Computer Science, University of Pisa, Italy

Cite AsGet BibTex

Paolo Baldan, Davide Castelnovo, Andrea Corradini, and Fabio Gadducci. Left-Linear Rewriting in Adhesive Categories. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 11:1-11:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.CONCUR.2024.11

Abstract

When can two sequential steps performed by a computing device be considered (causally) independent? This is a relevant question for concurrent and distributed systems, since independence means that they could be executed in any order, and potentially in parallel. Equivalences identifying rewriting sequences which differ only for independent steps are at the core of the theory of concurrency of many formalisms. We investigate the issue in the context of the double pushout approach to rewriting in the general setting of adhesive categories. While a consolidated theory exists for linear rules, which can consume, preserve and generate entities, this paper focuses on left-linear rules which may also "merge" parts of the state. This is an apparently minimal, yet technically hard enhancement, since a standard characterisation of independence that - in the linear case - allows one to derive a number of properties, essential in the development of a theory of concurrency, no longer holds. The paper performs an in-depth study of the notion of independence for left-linear rules: it introduces a novel characterisation of independence, identifies well-behaved classes of left-linear rewriting systems, and provides some fundamental results including a Church-Rosser property and the existence of canonical equivalence proofs for concurrent computations. These results properly extends the class of formalisms that can be modelled in the adhesive framework.

Subject Classification

ACM Subject Classification
  • Theory of computation → Models of computation
  • Theory of computation → Semantics and reasoning
Keywords
  • Adhesive categories
  • double-pushout rewriting
  • left-linear rules
  • switch equivalence
  • local Church-Rosser property

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. G. G. Azzi, A. Corradini, and L. Ribeiro. On the essence and initiality of conflicts in ℳ-adhesive transformation systems. Journal of Logical and Algebraic Methods in Programming, 109:100482, 2019. Google Scholar
  2. P. Baldan, A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. Concurrent semantics of algebraic graph transformation systems. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph Transformation. Volume 3: Concurrency, pages 107-187. World Scientific, 1999. Google Scholar
  3. Paolo Baldan, Andrea Corradini, and Fabio Gadducci. Domains and event structures for fusions. In LICS 2017, pages 1-12. IEEE Computer Society, 2017. Google Scholar
  4. Paolo Baldan, Andrea Corradini, Tobias Heindel, Barbara König, and Pawel Sobocinski. Processes for adhesive rewriting systems. In Luca Aceto and Anna Ingólfsdóttir, editors, FOSSACS 2006, volume 3921 of LNCS, pages 202-216. Springer, 2006. Google Scholar
  5. Paolo Baldan, Fabio Gadducci, and Ugo Montanari. Concurrent rewriting for graphs with equivalences. In Christel Baier and Holger Hermanns, editors, CONCUR 2006, volume 4137 of LNCS, pages 279-294. Springer, 2006. Google Scholar
  6. Paolo Baldan, Fabio Gadducci, and Pawel Sobocinski. Adhesivity is not enough: Local Church-Rosser revisited. In Filip Murlak and Piotr Sankowski, editors, MFCS 2011, volume 6907 of LNCS, pages 48-59. Springer, 2011. Google Scholar
  7. Nicolas Behr, Russ Harmer, and Jean Krivine. Concurrency theorems for non-linear rewriting theories. In Fabio Gadducci and Timo Kehrer, editors, ICGT 2021, volume 12741 of LNCS, pages 3-21. Springer, 2021. Google Scholar
  8. Nicolas Behr, Russ Harmer, and Jean Krivine. Fundamentals of compositional rewriting theory. Journal of Logical and Algebraic Methods in Programming, 135:100893, 2023. Google Scholar
  9. F. Bonchi, F. Gadducci, A. Kissinger, P. Sobociński, and F. Zanasi. String diagram rewrite theory I: rewriting with Frobenius structure. Journal of the Association for Computing Machinery, 69(2):1-58, 2022. Google Scholar
  10. R. Brown and G. Janelidze. Van Kampen theorems for categories of covering morphisms in lextensive categories. Journal of Pure and Applied Algebra, 119(3):255-263, 1997. Google Scholar
  11. Aurelio Carboni, Stephen Lack, and Robert FC Walters. Introduction to extensive and distributive categories. Journal of Pure and Applied Algebra, 84(2):145-158, 1993. Google Scholar
  12. D. Castelnovo. Fuzzy algebraic theories and ℳ, 𝒩-adhesive categories. PhD thesis, University of Udine, 2023. Google Scholar
  13. D. Castelnovo, F. Gadducci, and M. Miculan. A new criterion for ℳ,𝒩-adhesivity, with an application to hierarchical graphs. In P. Bouyer and L. Schröder, editors, FOSSACS 2022, volume 13242 of LNCS, pages 205-224. Springer, 2022. Google Scholar
  14. Davide Castelnovo, Fabio Gadducci, and Marino Miculan. A simple criterion for ℳ, 𝒩-adhesivity. Theoretical Computer Science, 982:114280, 2024. Google Scholar
  15. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Informaticae, 26:241-265, 1996. Google Scholar
  16. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic approaches to graph transformation - Part I: Basic concepts and double pushout approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph Transformations. Volume 1: Foundations, pages 163-246. World Scientific, 1997. Google Scholar
  17. Andrea Corradini, Tobias Heindel, Frank Hermann, and Barbara König. Sesqui-pushout rewriting. In Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, and Grzegorz Rozenberg, editors, ICGT 2006, volume 4178 of LNCS, pages 30-45. Springer, 2006. Google Scholar
  18. S. Crafa, D. Varacca, and N. Yoshida. Event structure semantics of parallel extrusion in the π-calculus. In L. Birkedal, editor, FOSSACS 2012, volume 7213 of LNCS, pages 225-239. Springer, 2012. Google Scholar
  19. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transformation. Springer, 2006. Google Scholar
  20. H. Ehrig, U. Golas, A. Habel, L. Lambers, and F. Orejas. ℳ-adhesive transformation systems with nested application conditions. Part 2: Embedding, critical pairs and local confluence. Fundamenta Informaticae, 118(1-2):35-63, 2012. Google Scholar
  21. H. Ehrig, U. Golas, A. Habel, L. Lambers, and F. Orejas. ℳ-adhesive transformation systems with nested application conditions. Part 1: Parallelism, concurrency and amalgamation. Mathematical Structures in Computer Science, 24(4):240406, 2014. Google Scholar
  22. H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive high-level replacement categories and systems. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G Rozenberg, editors, ICGT 2004, LNCS, pages 144-160. Springe, 2004. Google Scholar
  23. Hartmut Ehrig, Annegret Habel, and Francesco Parisi-Presicce. Basic results for two types of high-level replacement systems. In Michel Bauderon and Andrea Corradini, editors, GETGRATS Closing Workshop 2001, volume 51 of ENTCS, pages 127-138. Elsevier, 2001. Google Scholar
  24. Hartmut Ehrig and Hans-Jörg Kreowski. Parallelism of manipulations in multidimensional information structures. In Antoni W. Mazurkiewicz, editor, MFCS 1976, volume 45 of LNCS, pages 284-293. Springer, 1976. Google Scholar
  25. Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. Graph-grammars: An algebraic approach. In SWAT 1973, pages 167-180. IEEE Computer Society, 1973. Google Scholar
  26. Hartmut Ehrig and Ulrike Prange. Weak adhesive high-level replacement categories and systems: A unifying framework for graph and Petri net transformations. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors, Algebra, Meaning, and Computation, Essays Dedicated to Joseph A. Goguen, volume 4060 of LNCS, pages 235-251. Springer, 2006. Google Scholar
  27. F. Gadducci. Graph rewriting and the π-calculus. Mathematical Structures in Computer Science, 17(3):1-31, 2007. Google Scholar
  28. R. Garner and S. Lack. On the axioms for adhesive and quasiadhesive categories. Theory and Applications of Categories, 27(3):27-46, 2012. Google Scholar
  29. A. Habel and D. Plump. ℳ, 𝒩-adhesive transformation systems. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, ICGT 2012, volume 7562 of LNCS, pages 218-233. Springer, 2012. Google Scholar
  30. T. Heindel. A category theoretical approach to the concurrent semantics of rewriting. PhD thesis, Universität Duisburg-Essen, 2009. Google Scholar
  31. P.T. Johnstone, S. Lack, and P. Sobociński. Quasitoposes, quasiadhesive categories and Artin glueing. In T. Mossakowski, U. Montanari, and M. Haveraaen, editors, CALCO 2007, volume 4624 of LNCS, pages 312-326. Springer, 2007. Google Scholar
  32. S. Lack and P. Sobociński. Adhesive and quasiadhesive categories. RAIRO-Theoretical Informatics and Applications, 39(3):511-545, 2005. Google Scholar
  33. S. Lack and P. Sobociński. Toposes are adhesive. In A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozenberg, editors, ICGT 2006, volume 4178 of LNCS, pages 184-198. Springer, 2006. Google Scholar
  34. Henrich Lauko, Lukás Korencik, and Peter Goodman. On the optimization of equivalent concurrent computations. CoRR, abs/2208.06295, 2022. Google Scholar
  35. J.J. Lévy. Optimal reductions in the lambda-calculus. In J.P. Seldin and J.R. Hindley, editors, To H.B. Curry, Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 159-191. Academic Press, 1980. Google Scholar
  36. S. MacLane. Categories for the working mathematician. Springer, 2013. Google Scholar
  37. Antoni W. Mazurkiewicz. Trace theory. In Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Advances in Petri Nets 1986, volume 255 of LNCS, pages 279-324. Springer, 1986. Google Scholar
  38. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science, 96(1):73-155, 1992. Google Scholar
  39. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains, Part 1. Theoretical Computer Science, 13:85-108, 1981. Google Scholar
  40. Roy Overbeek, Jörg Endrullis, and Aloïs Rosset. Graph rewriting and relabeling with PBPO^+: A unifying theory for quasitoposes. Journal of Logical and Algebraic Methods in Programming, 133:100873, 2023. Google Scholar
  41. I. Phillips, I. Ulidowski, and S. Yuen. Modelling of bonding with processes and events. In Gerhard W. Dueck and D. Michael Miller, editors, RC 2013, volume 7948 of LNCS, pages 141-154. Springer, 2013. Google Scholar
  42. Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. egg: Fast and extensible equality saturation. Proceedings of the ACM on Programming Languages, 5(POPL):1-29, 2021. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail