2 Search Results for "Riley, Mitchell"


Document
Adjoint Natural Deduction

Authors: Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Adjoint logic is a general approach to combining multiple logics with different structural properties, including linear, affine, strict, and (ordinary) intuitionistic logics, where each proposition has an intrinsic mode of truth. It has been defined in the form of a sequent calculus because the central concept of independence is most clearly understood in this form, and because it permits a proof of cut elimination following standard techniques. In this paper we present a natural deduction formulation of adjoint logic and show how it is related to the sequent calculus. As a consequence, every provable proposition has a verification (sometimes called a long normal form). We also give a computational interpretation of adjoint logic in the form of a functional language and prove properties of computations that derive from the structure of modes, including freedom from garbage (for modes without weakening and contraction), strictness (for modes disallowing weakening), and erasure (based on a preorder between modes). Finally, we present a surprisingly subtle algorithm for type checking.

Cite as

Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka. Adjoint Natural Deduction. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jang_et_al:LIPIcs.FSCD.2024.15,
  author =	{Jang, Junyoung and Roshal, Sophia and Pfenning, Frank and Pientka, Brigitte},
  title =	{{Adjoint Natural Deduction}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.15},
  URN =		{urn:nbn:de:0030-drops-203441},
  doi =		{10.4230/LIPIcs.FSCD.2024.15},
  annote =	{Keywords: Substructural Logic, Type Systems, Functional Programming}
}
Document
A Fibrational Framework for Substructural and Modal Logics

Authors: Daniel R. Licata, Michael Shulman, and Mitchell Riley

Published in: LIPIcs, Volume 84, 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017)


Abstract
We define a general framework that abstracts the common features of many intuitionistic substructural and modal logics / type theories. The framework is a sequent calculus / normal-form type theory parametrized by a mode theory, which is used to describe the structure of contexts and the structural properties they obey. In this sequent calculus, the context itself obeys standard structural properties, while a term, drawn from the mode theory, constrains how the context can be used. Product types, implications, and modalities are defined as instances of two general connectives, one positive and one negative, that manipulate these terms. Specific mode theories can express a range of substructural and modal connectives, including non-associative, ordered, linear, affine, relevant, and cartesian products and implications; monoidal and non-monoidal functors, (co)monads and adjunctions; n-linear variables; and bunched implications. We prove cut (and identity) admissibility independently of the mode theory, obtaining it for many different logics at once. Further, we give a general equational theory on derivations / terms that, in addition to the usual beta/eta-rules, characterizes when two derivations differ only by the placement of structural rules. Additionally, we give an equivalent semantic presentation of these ideas, in which a mode theory corresponds to a 2-dimensional cartesian multicategory, the framework corresponds to another such multicategory with a functor to the mode theory, and the logical connectives make this into a bifibration. Finally, we show how the framework can be used both to encode existing existing logics / type theories and to design new ones.

Cite as

Daniel R. Licata, Michael Shulman, and Mitchell Riley. A Fibrational Framework for Substructural and Modal Logics. In 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 84, pp. 25:1-25:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{licata_et_al:LIPIcs.FSCD.2017.25,
  author =	{Licata, Daniel R. and Shulman, Michael and Riley, Mitchell},
  title =	{{A Fibrational Framework for Substructural and Modal Logics}},
  booktitle =	{2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017)},
  pages =	{25:1--25:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-047-7},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{84},
  editor =	{Miller, Dale},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2017.25},
  URN =		{urn:nbn:de:0030-drops-77400},
  doi =		{10.4230/LIPIcs.FSCD.2017.25},
  annote =	{Keywords: type theory, modal logic, substructural logic, homotopy type theory}
}
  • Refine by Author
  • 1 Jang, Junyoung
  • 1 Licata, Daniel R.
  • 1 Pfenning, Frank
  • 1 Pientka, Brigitte
  • 1 Riley, Mitchell
  • Show More...

  • Refine by Classification
  • 1 Theory of computation → Linear logic
  • 1 Theory of computation → Proof theory

  • Refine by Keyword
  • 1 Functional Programming
  • 1 Substructural Logic
  • 1 Type Systems
  • 1 homotopy type theory
  • 1 modal logic
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2017
  • 1 2024