4 Search Results for "Roth, Tal"


Document
Asymptotically-Good RLCCs with (log n)^(2+o(1)) Queries

Authors: Gil Cohen and Tal Yankovitz

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Recently, Kumar and Mon reached a significant milestone by constructing asymptotically good relaxed locally correctable codes (RLCCs) with poly-logarithmic query complexity. Specifically, they constructed n-bit RLCCs with O(log^{69} n) queries. Their construction relies on a clever reduction to locally testable codes (LTCs), capitalizing on recent breakthrough works in LTCs. As for lower bounds, Gur and Lachish (SICOMP 2021) proved that any asymptotically-good RLCC must make Ω̃(√{log n}) queries. Hence emerges the intriguing question regarding the identity of the least value 1/2 ≤ e ≤ 69 for which asymptotically-good RLCCs with query complexity (log n)^{e+o(1)} exist. In this work, we make substantial progress in narrowing the gap by devising asymptotically-good RLCCs with a query complexity of (log n)^{2+o(1)}. The key insight driving our work lies in recognizing that the strong guarantee of local testability overshoots the requirements for the Kumar-Mon reduction. In particular, we prove that we can replace the LTCs by "vanilla" expander codes which indeed have the necessary property: local testability in the code’s vicinity.

Cite as

Gil Cohen and Tal Yankovitz. Asymptotically-Good RLCCs with (log n)^(2+o(1)) Queries. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.CCC.2024.8,
  author =	{Cohen, Gil and Yankovitz, Tal},
  title =	{{Asymptotically-Good RLCCs with (log n)^(2+o(1)) Queries}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.8},
  URN =		{urn:nbn:de:0030-drops-204045},
  doi =		{10.4230/LIPIcs.CCC.2024.8},
  annote =	{Keywords: Relaxed locally decodable codes, Relxaed locally correctable codes, RLCC, RLDC}
}
Document
A Linear Type System for L^p-Metric Sensitivity Analysis

Authors: Victor Sannier and Patrick Baillot

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
When working in optimisation or privacy protection, one may need to estimate the sensitivity of computer programs, i.e., the maximum multiplicative increase in the distance between two inputs and the corresponding two outputs. In particular, differential privacy is a rigorous and widely used notion of privacy that is closely related to sensitivity. Several type systems for sensitivity and differential privacy based on linear logic have been proposed in the literature, starting with the functional language Fuzz. However, they are either limited to certain metrics (L¹ and L^∞), and thus to the associated privacy mechanisms, or they rely on a complex notion of type contexts that does not interact well with operational semantics. We therefore propose a graded linear type system - inspired by Bunched Fuzz [{w}under et al., 2023] - called Plurimetric Fuzz that handles L^p vector metrics (for 1 ≤ p ≤ +∞), uses standard type contexts, gives reasonable bounds on sensitivity, and has good metatheoretical properties. We also provide a denotational semantics in terms of metric complete partial orders, and translation mappings from and to Fuzz.

Cite as

Victor Sannier and Patrick Baillot. A Linear Type System for L^p-Metric Sensitivity Analysis. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 12:1-12:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sannier_et_al:LIPIcs.FSCD.2024.12,
  author =	{Sannier, Victor and Baillot, Patrick},
  title =	{{A Linear Type System for L^p-Metric Sensitivity Analysis}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{12:1--12:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.12},
  URN =		{urn:nbn:de:0030-drops-203412},
  doi =		{10.4230/LIPIcs.FSCD.2024.12},
  annote =	{Keywords: type system, linear logic, sensitivity, vector metrics, differential privacy, lambda-calculus, functional programming, denotational semantics}
}
Document
Track A: Algorithms, Complexity and Games
The Communication Complexity of Set Intersection Under Product Distributions

Authors: Rotem Oshman and Tal Roth

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We consider a multiparty setting where k parties have private inputs X_1,…,X_k ⊆ [n] and wish to compute the intersection ⋂_{𝓁 =1}^k X_𝓁 of their sets, using as little communication as possible. This task generalizes the well-known problem of set disjointness, where the parties are required only to determine whether the intersection is empty or not. In the worst-case, it is known that the communication complexity of finding the intersection is the same as that of solving set disjointness, regardless of the size of the intersection: the cost of both problems is Ω(n log k + k) bits in the shared blackboard model, and Ω (nk) bits in the coordinator model. In this work we consider a realistic setting where the parties' inputs are independent of one another, that is, the input is drawn from a product distribution. We show that this makes finding the intersection significantly easier than in the worst-case: only Θ̃((n^{1-1/k} (H(S) + 1)^{1/k}) + k) bits of communication are required, where {H}(S) is the Shannon entropy of the intersection S. We also show that the parties do not need to know the exact underlying input distribution; if we are given in advance O(n^{1/k}) samples from the underlying distribution μ, we can learn enough about μ to allow us to compute the intersection of an input drawn from μ using expected communication Θ̃((n^{1-1/k}𝔼[|S|]^{1/k}) + k), where |S| is the size of the intersection.

Cite as

Rotem Oshman and Tal Roth. The Communication Complexity of Set Intersection Under Product Distributions. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 95:1-95:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{oshman_et_al:LIPIcs.ICALP.2023.95,
  author =	{Oshman, Rotem and Roth, Tal},
  title =	{{The Communication Complexity of Set Intersection Under Product Distributions}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{95:1--95:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.95},
  URN =		{urn:nbn:de:0030-drops-181472},
  doi =		{10.4230/LIPIcs.ICALP.2023.95},
  annote =	{Keywords: Communication complexity, intersection, set disjointness}
}
Document
RANDOM
Candidate Tree Codes via Pascal Determinant Cubes

Authors: Inbar Ben Yaacov, Gil Cohen, and Anand Kumar Narayanan

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
Tree codes are combinatorial structures introduced by Schulman [Schulman, 1993] as key ingredients in interactive coding schemes. Asymptotically-good tree codes are long known to exist, yet their explicit construction remains a notoriously hard open problem. Even proposing a plausible construction, without the burden of proof, is difficult and the defining tree code property requires structure that remains elusive. To the best of our knowledge, only one candidate appears in the literature, due to Moore and Schulman [Moore and Schulman, 2014]. We put forth a new candidate for an explicit asymptotically-good tree code. Our construction is an extension of the vanishing rate tree code by Cohen-Haeupler-Schulman [Cohen et al., 2018], and its correctness relies on a conjecture that we introduce on certain Pascal determinants indexed by the points of the Boolean hypercube. Furthermore, using the vanishing distance tree code by Gelles et al. [Gelles et al., 2016] enables us to present a construction that relies on an even weaker assumption. We furnish evidence supporting our conjecture through numerical computation, combinatorial arguments from planar path graphs and based on well-studied heuristics from arithmetic geometry.

Cite as

Inbar Ben Yaacov, Gil Cohen, and Anand Kumar Narayanan. Candidate Tree Codes via Pascal Determinant Cubes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 54:1-54:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{benyaacov_et_al:LIPIcs.APPROX/RANDOM.2021.54,
  author =	{Ben Yaacov, Inbar and Cohen, Gil and Narayanan, Anand Kumar},
  title =	{{Candidate Tree Codes via Pascal Determinant Cubes}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{54:1--54:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.54},
  URN =		{urn:nbn:de:0030-drops-147474},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.54},
  annote =	{Keywords: Tree codes, Sparse polynomials, Explicit constructions}
}
  • Refine by Author
  • 2 Cohen, Gil
  • 1 Baillot, Patrick
  • 1 Ben Yaacov, Inbar
  • 1 Narayanan, Anand Kumar
  • 1 Oshman, Rotem
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Error-correcting codes
  • 1 Security and privacy → Logic and verification
  • 1 Theory of computation → Communication complexity
  • 1 Theory of computation → Linear logic
  • 1 Theory of computation → Type theory

  • Refine by Keyword
  • 1 Communication complexity
  • 1 Explicit constructions
  • 1 RLCC
  • 1 RLDC
  • 1 Relaxed locally decodable codes
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2024
  • 1 2021
  • 1 2023