4 Search Results for "Singer, Noah"


Document
APPROX
Oblivious Algorithms for the Max-kAND Problem

Authors: Noah G. Singer

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
Motivated by recent works on streaming algorithms for constraint satisfaction problems (CSPs), we define and analyze oblivious algorithms for the Max-kAND problem. This is a class of simple, combinatorial algorithms which round each variable with probability depending only on a quantity called the variable’s bias. Our definition generalizes a class of algorithms defined by Feige and Jozeph (Algorithmica '15) for Max-DICUT, a special case of Max-2AND. For each oblivious algorithm, we design a so-called factor-revealing linear program (LP) which captures its worst-case instance, generalizing one of Feige and Jozeph for Max-DICUT. Then, departing from their work, we perform a fully explicit analysis of these (infinitely many!) LPs. In particular, we show that for all k, oblivious algorithms for Max-kAND provably outperform a special subclass of algorithms we call "superoblivious" algorithms. Our result has implications for streaming algorithms: Generalizing the result for Max-DICUT of Saxena, Singer, Sudan, and Velusamy (SODA'23), we prove that certain separation results hold between streaming models for infinitely many CSPs: for every k, O(log n)-space sketching algorithms for Max-kAND known to be optimal in o(√n)-space can be beaten in (a) O(log n)-space under a random-ordering assumption, and (b) O(n^{1-1/k} D^{1/k}) space under a maximum-degree-D assumption. Even in the previously-known case of Max-DICUT, our analytic proof gives a fuller, computer-free picture of these separation results.

Cite as

Noah G. Singer. Oblivious Algorithms for the Max-kAND Problem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{singer:LIPIcs.APPROX/RANDOM.2023.15,
  author =	{Singer, Noah G.},
  title =	{{Oblivious Algorithms for the Max-kAND Problem}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{15:1--15:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.15},
  URN =		{urn:nbn:de:0030-drops-188409},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.15},
  annote =	{Keywords: streaming algorithm, approximation algorithm, constraint satisfaction problem (CSP), factor-revealing linear program}
}
Document
APPROX
On Sketching Approximations for Symmetric Boolean CSPs

Authors: Joanna Boyland, Michael Hwang, Tarun Prasad, Noah Singer, and Santhoshini Velusamy

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
A Boolean maximum constraint satisfaction problem, Max-CSP(f), is specified by a predicate f:{-1,1}^k → {0,1}. An n-variable instance of Max-CSP(f) consists of a list of constraints, each of which applies f to k distinct literals drawn from the n variables. For k = 2, Chou, Golovnev, and Velusamy [Chou et al., 2020] obtained explicit ratios characterizing the √ n-space streaming approximability of every predicate. For k ≥ 3, Chou, Golovnev, Sudan, and Velusamy [Chou et al., 2022] proved a general dichotomy theorem for √ n-space sketching algorithms: For every f, there exists α(f) ∈ (0,1] such that for every ε > 0, Max-CSP(f) is (α(f)-ε)-approximable by an O(log n)-space linear sketching algorithm, but (α(f)+ε)-approximation sketching algorithms require Ω(√n) space. In this work, we give closed-form expressions for the sketching approximation ratios of multiple families of symmetric Boolean functions. Letting α'_k = 2^{-(k-1)} (1-k^{-2})^{(k-1)/2}, we show that for odd k ≥ 3, α(kAND) = α'_k, and for even k ≥ 2, α(kAND) = 2α'_{k+1}. Thus, for every k, kAND can be (2-o(1))2^{-k}-approximated by O(log n)-space sketching algorithms; we contrast this with a lower bound of Chou, Golovnev, Sudan, Velingker, and Velusamy [Chou et al., 2022] implying that streaming (2+ε)2^{-k}-approximations require Ω(n) space! We also resolve the ratio for the "at-least-(k-1)-1’s" function for all even k; the "exactly-(k+1)/2-1’s" function for odd k ∈ {3,…,51}; and fifteen other functions. We stress here that for general f, the dichotomy theorem in [Chou et al., 2022] only implies that α(f) can be computed to arbitrary precision in PSPACE, and thus closed-form expressions need not have existed a priori. Our analyses involve identifying and exploiting structural "saddle-point" properties of this dichotomy. Separately, for all threshold functions, we give optimal "bias-based" approximation algorithms generalizing [Chou et al., 2020] while simplifying [Chou et al., 2022]. Finally, we investigate the √ n-space streaming lower bounds in [Chou et al., 2022], and show that they are incomplete for 3AND, i.e., they fail to rule out (α(3AND})-ε)-approximations in o(√ n) space.

Cite as

Joanna Boyland, Michael Hwang, Tarun Prasad, Noah Singer, and Santhoshini Velusamy. On Sketching Approximations for Symmetric Boolean CSPs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 38:1-38:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{boyland_et_al:LIPIcs.APPROX/RANDOM.2022.38,
  author =	{Boyland, Joanna and Hwang, Michael and Prasad, Tarun and Singer, Noah and Velusamy, Santhoshini},
  title =	{{On Sketching Approximations for Symmetric Boolean CSPs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{38:1--38:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.38},
  URN =		{urn:nbn:de:0030-drops-171604},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.38},
  annote =	{Keywords: Streaming algorithms, constraint satisfaction problems, approximability}
}
Document
Invited Talk
Streaming and Sketching Complexity of CSPs: A Survey (Invited Talk)

Authors: Madhu Sudan

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
In this survey we describe progress over the last decade or so in understanding the complexity of solving constraint satisfaction problems (CSPs) approximately in the streaming and sketching models of computation. After surveying some of the results we give some sketches of the proofs and in particular try to explain why there is a tight dichotomy result for sketching algorithms working in subpolynomial space regime.

Cite as

Madhu Sudan. Streaming and Sketching Complexity of CSPs: A Survey (Invited Talk). In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{sudan:LIPIcs.ICALP.2022.5,
  author =	{Sudan, Madhu},
  title =	{{Streaming and Sketching Complexity of CSPs: A Survey}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.5},
  URN =		{urn:nbn:de:0030-drops-163460},
  doi =		{10.4230/LIPIcs.ICALP.2022.5},
  annote =	{Keywords: Streaming algorithms, Sketching algorithms, Dichotomy, Communication Complexity}
}
Document
APPROX
Streaming Approximation Resistance of Every Ordering CSP

Authors: Noah Singer, Madhu Sudan, and Santhoshini Velusamy

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
An ordering constraint satisfaction problem (OCSP) is given by a positive integer k and a constraint predicate Π mapping permutations on {1,…,k} to {0,1}. Given an instance of OCSP(Π) on n variables and m constraints, the goal is to find an ordering of the n variables that maximizes the number of constraints that are satisfied, where a constraint specifies a sequence of k distinct variables and the constraint is satisfied by an ordering on the n variables if the ordering induced on the k variables in the constraint satisfies Π. Ordering constraint satisfaction problems capture natural problems including "Maximum acyclic subgraph (MAS)" and "Betweenness". In this work we consider the task of approximating the maximum number of satisfiable constraints in the (single-pass) streaming setting, where an instance is presented as a stream of constraints. We show that for every Π, OCSP(Π) is approximation-resistant to o(n)-space streaming algorithms, i.e., algorithms using o(n) space cannot distinguish streams where almost every constraint is satisfiable from streams where no ordering beats the random ordering by a noticeable amount. This space bound is tight up to polylogarithmic factors. In the case of MAS our result shows that for every ε > 0, MAS is not 1/2+ε-approximable in o(n) space. The previous best inapproximability result only ruled out a 3/4-approximation in o(√ n) space. Our results build on recent works of Chou, Golovnev, Sudan, Velingker, and Velusamy who show tight, linear-space inapproximability results for a broad class of (non-ordering) constraint satisfaction problems (CSPs) over arbitrary (finite) alphabets. Our results are obtained by building a family of appropriate CSPs (one for every q) from any given OCSP, and applying their work to this family of CSPs. To convert the resulting hardness results for CSPs back to our OCSP, we show that the hard instances from this earlier work have the following "small-set expansion" property: If the CSP instance is viewed as a hypergraph in the natural way, then for every partition of the hypergraph into small blocks most of the hyperedges are incident on vertices from distinct blocks. By exploiting this combinatorial property, in combination with the hardness results of the resulting families of CSPs, we give optimal inapproximability results for all OCSPs.

Cite as

Noah Singer, Madhu Sudan, and Santhoshini Velusamy. Streaming Approximation Resistance of Every Ordering CSP. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 17:1-17:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{singer_et_al:LIPIcs.APPROX/RANDOM.2021.17,
  author =	{Singer, Noah and Sudan, Madhu and Velusamy, Santhoshini},
  title =	{{Streaming Approximation Resistance of Every Ordering CSP}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{17:1--17:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.17},
  URN =		{urn:nbn:de:0030-drops-147106},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.17},
  annote =	{Keywords: Streaming approximations, approximation resistance, constraint satisfaction problems, ordering constraint satisfaction problems}
}
  • Refine by Author
  • 2 Singer, Noah
  • 2 Sudan, Madhu
  • 2 Velusamy, Santhoshini
  • 1 Boyland, Joanna
  • 1 Hwang, Michael
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Discrete optimization
  • 3 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 2 Theory of computation → Approximation algorithms analysis
  • 1 Mathematics of computing → Approximation algorithms
  • 1 Theory of computation → Sketching and sampling

  • Refine by Keyword
  • 2 Streaming algorithms
  • 2 constraint satisfaction problems
  • 1 Communication Complexity
  • 1 Dichotomy
  • 1 Sketching algorithms
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2022
  • 1 2021
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail