3 Search Results for "Valencia, Frank D."


Document
Domain-Aware Session Types

Authors: Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
We develop a generalization of existing Curry-Howard interpretations of (binary) session types by relying on an extension of linear logic with features from hybrid logic, in particular modal worlds that indicate domains. These worlds govern domain migration, subject to a parametric accessibility relation familiar from the Kripke semantics of modal logic. The result is an expressive new typed process framework for domain-aware, message-passing concurrency. Its logical foundations ensure that well-typed processes enjoy session fidelity, global progress, and termination. Typing also ensures that processes only communicate with accessible domains and so respect the accessibility relation. Remarkably, our domain-aware framework can specify scenarios in which domain information is available only at runtime; flexible accessibility relations can be cleanly defined and statically enforced. As a specific application, we introduce domain-aware multiparty session types, in which global protocols can express arbitrarily nested sub-protocols via domain migration. We develop a precise analysis of these multiparty protocols by reduction to our binary domain-aware framework: complex domain-aware protocols can be reasoned about at the right level of abstraction, ensuring also the principled transfer of key correctness properties from the binary to the multiparty setting.

Cite as

Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Domain-Aware Session Types. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 39:1-39:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{caires_et_al:LIPIcs.CONCUR.2019.39,
  author =	{Caires, Lu{\'\i}s and P\'{e}rez, Jorge A. and Pfenning, Frank and Toninho, Bernardo},
  title =	{{Domain-Aware Session Types}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{39:1--39:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.39},
  URN =		{urn:nbn:de:0030-drops-109417},
  doi =		{10.4230/LIPIcs.CONCUR.2019.39},
  annote =	{Keywords: Session Types, Linear Logic, Process Calculi, Hybrid Logic}
}
Document
Reasoning About Distributed Knowledge of Groups with Infinitely Many Agents

Authors: Michell Guzmán, Sophia Knight, Santiago Quintero, Sergio Ramírez, Camilo Rueda, and Frank Valencia

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
Spatial constraint systems (scs) are semantic structures for reasoning about spatial and epistemic information in concurrent systems. We develop the theory of scs to reason about the distributed information of potentially infinite groups. We characterize the notion of distributed information of a group of agents as the infimum of the set of join-preserving functions that represent the spaces of the agents in the group. We provide an alternative characterization of this notion as the greatest family of join-preserving functions that satisfy certain basic properties. We show compositionality results for these characterizations and conditions under which information that can be obtained by an infinite group can also be obtained by a finite group. Finally, we provide algorithms that compute the distributive group information of finite groups.

Cite as

Michell Guzmán, Sophia Knight, Santiago Quintero, Sergio Ramírez, Camilo Rueda, and Frank Valencia. Reasoning About Distributed Knowledge of Groups with Infinitely Many Agents. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 29:1-29:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{guzman_et_al:LIPIcs.CONCUR.2019.29,
  author =	{Guzm\'{a}n, Michell and Knight, Sophia and Quintero, Santiago and Ram{\'\i}rez, Sergio and Rueda, Camilo and Valencia, Frank},
  title =	{{Reasoning About Distributed Knowledge of Groups with Infinitely Many Agents}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{29:1--29:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.29},
  URN =		{urn:nbn:de:0030-drops-109314},
  doi =		{10.4230/LIPIcs.CONCUR.2019.29},
  annote =	{Keywords: Reasoning about Groups, Distributed Knowledge, Infinitely Many Agents, Reasoning about Space, Algebraic Modeling}
}
Document
On the Expressiveness of Spatial Constraint Systems

Authors: Michell Guzmán and Frank D. Valencia

Published in: OASIcs, Volume 52, Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016)


Abstract
In this paper we shall report on our progress using spatial constraint system as an abstract representation of modal and epistemic behaviour. First we shall give an introduction as well as the background to our work. Then, we present our preliminary results on the representation of modal behaviour by using spatial constraint systems. Then, we present our ongoing work on the characterization of the epistemic notion of knowledge. Finally, we discuss about the future work of our research.

Cite as

Michell Guzmán and Frank D. Valencia. On the Expressiveness of Spatial Constraint Systems. In Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016). Open Access Series in Informatics (OASIcs), Volume 52, pp. 16:1-16:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{guzman_et_al:OASIcs.ICLP.2016.16,
  author =	{Guzm\'{a}n, Michell and Valencia, Frank D.},
  title =	{{On the Expressiveness of Spatial Constraint Systems}},
  booktitle =	{Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016)},
  pages =	{16:1--16:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-007-1},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{52},
  editor =	{Carro, Manuel and King, Andy and Saeedloei, Neda and De Vos, Marina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ICLP.2016.16},
  URN =		{urn:nbn:de:0030-drops-67469},
  doi =		{10.4230/OASIcs.ICLP.2016.16},
  annote =	{Keywords: Epistemic logic, Modal logic, Constraint systems, Concurrent constraint programming}
}
  • Refine by Author
  • 2 Guzmán, Michell
  • 1 Caires, Luís
  • 1 Knight, Sophia
  • 1 Pfenning, Frank
  • 1 Pérez, Jorge A.
  • Show More...

  • Refine by Classification
  • 1 Software and its engineering → Message passing
  • 1 Theory of computation → Concurrency
  • 1 Theory of computation → Distributed computing models
  • 1 Theory of computation → Process calculi
  • 1 Theory of computation → Semantics and reasoning
  • Show More...

  • Refine by Keyword
  • 1 Algebraic Modeling
  • 1 Concurrent constraint programming
  • 1 Constraint systems
  • 1 Distributed Knowledge
  • 1 Epistemic logic
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2019
  • 1 2016

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail