2 Search Results for "Werner, Tomáš"


Document
Scalable Hard Instances for Independent Set Reconfiguration

Authors: Takehide Soh, Takumu Watanabe, Jun Kawahara, Akira Suzuki, and Takehiro Ito

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
The Token Jumping problem, also known as the independent set reconfiguration problem under the token jumping model, is defined as follows: Given a graph and two same-sized independent sets, determine whether one can be transformed into the other via a sequence of independent sets. Token Jumping has been extensively studied, mainly from the viewpoint of algorithmic theory, but its practical study has just begun. To develop a practically good solver, it is important to construct benchmark datasets that are scalable and hard. Here, "scalable" means the ability to change the scale of the instance while maintaining its characteristics by adjusting the given parameters; and "hard" means that the instance can become so difficult that it cannot be solved within a practical time frame by a solver. In this paper, we propose four types of instance series for Token Jumping. Our instance series is scalable in the sense that instance scales are controlled by the number of vertices. To establish their hardness, we focus on the numbers of transformation steps; our instance series requires exponential numbers of steps with respect to the number of vertices. Interestingly, three types of instance series are constructed by importing theories developed by algorithmic research. We experimentally evaluate the scalability and hardness of the proposed instance series, using the SAT solver and award-winning solvers of the international competition for Token Jumping.

Cite as

Takehide Soh, Takumu Watanabe, Jun Kawahara, Akira Suzuki, and Takehiro Ito. Scalable Hard Instances for Independent Set Reconfiguration. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 26:1-26:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{soh_et_al:LIPIcs.SEA.2024.26,
  author =	{Soh, Takehide and Watanabe, Takumu and Kawahara, Jun and Suzuki, Akira and Ito, Takehiro},
  title =	{{Scalable Hard Instances for Independent Set Reconfiguration}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{26:1--26:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.26},
  URN =		{urn:nbn:de:0030-drops-203913},
  doi =		{10.4230/LIPIcs.SEA.2024.26},
  annote =	{Keywords: Combinatorial reconfiguration, Benckmark dataset, Graph Algorithm, PSPACE-complete}
}
Document
Bounds on Weighted CSPs Using Constraint Propagation and Super-Reparametrizations

Authors: Tomáš Dlask, Tomáš Werner, and Simon de Givry

Published in: LIPIcs, Volume 210, 27th International Conference on Principles and Practice of Constraint Programming (CP 2021)


Abstract
We propose a framework for computing upper bounds on the optimal value of the (maximization version of) Weighted CSP (WCSP) using super-reparametrizations, which are changes of the weights that keep or increase the WCSP objective for every assignment. We show that it is in principle possible to employ arbitrary (under certain technical conditions) constraint propagation rules to improve the bound. For arc consistency in particular, the method reduces to the known Virtual AC (VAC) algorithm. Newly, we implemented the method for singleton arc consistency (SAC) and compared it to other strong local consistencies in WCSPs on a public benchmark. The results show that the bounds obtained from SAC are superior for many instance groups.

Cite as

Tomáš Dlask, Tomáš Werner, and Simon de Givry. Bounds on Weighted CSPs Using Constraint Propagation and Super-Reparametrizations. In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 210, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dlask_et_al:LIPIcs.CP.2021.23,
  author =	{Dlask, Tom\'{a}\v{s} and Werner, Tom\'{a}\v{s} and de Givry, Simon},
  title =	{{Bounds on Weighted CSPs Using Constraint Propagation and Super-Reparametrizations}},
  booktitle =	{27th International Conference on Principles and Practice of Constraint Programming (CP 2021)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-211-2},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{210},
  editor =	{Michel, Laurent D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.23},
  URN =		{urn:nbn:de:0030-drops-153149},
  doi =		{10.4230/LIPIcs.CP.2021.23},
  annote =	{Keywords: Weighted CSP, Super-Reparametrization, Linear Programming, Constraint Propagation}
}
  • Refine by Author
  • 1 Dlask, Tomáš
  • 1 Ito, Takehiro
  • 1 Kawahara, Jun
  • 1 Soh, Takehide
  • 1 Suzuki, Akira
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Discrete space search
  • 1 Mathematics of computing → Linear programming
  • 1 Theory of computation → Constraint and logic programming
  • 1 Theory of computation → Linear programming

  • Refine by Keyword
  • 1 Benckmark dataset
  • 1 Combinatorial reconfiguration
  • 1 Constraint Propagation
  • 1 Graph Algorithm
  • 1 Linear Programming
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2021
  • 1 2024