4 Search Results for "Baham�n, Julio C�sar"


Document
Survey
Semantic Web: Past, Present, and Future

Authors: Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called "Semantic Web Layer Cake" with an update of recent concepts that include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We conclude with an outlook on the future directions of the Semantic Web. This is a living document. If you like to contribute, please contact the first author and visit: https://github.com/ascherp/semantic-web-primer

Cite as

Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal. Semantic Web: Past, Present, and Future. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 3:1-3:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{scherp_et_al:TGDK.2.1.3,
  author =	{Scherp, Ansgar and Groener, Gerd and \v{S}koda, Petr and Hose, Katja and Vidal, Maria-Esther},
  title =	{{Semantic Web: Past, Present, and Future}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:37},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.3},
  URN =		{urn:nbn:de:0030-drops-198607},
  doi =		{10.4230/TGDK.2.1.3},
  annote =	{Keywords: Linked Open Data, Semantic Web Graphs, Knowledge Graphs}
}
Document
Dual Parameterization of Weighted Coloring

Authors: Júlio Araújo, Victor A. Campos, Carlos Vinícius G. C. Lima, Vinícius Fernandes dos Santos, Ignasi Sau, and Ana Silva

Published in: LIPIcs, Volume 115, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018)


Abstract
Given a graph G, a proper k-coloring of G is a partition c = (S_i)_{i in [1,k]} of V(G) into k stable sets S_1,..., S_k. Given a weight function w: V(G) -> R^+, the weight of a color S_i is defined as w(i) = max_{v in S_i} w(v) and the weight of a coloring c as w(c) = sum_{i=1}^{k} w(i). Guan and Zhu [Inf. Process. Lett., 1997] defined the weighted chromatic number of a pair (G,w), denoted by sigma(G,w), as the minimum weight of a proper coloring of G. The problem of determining sigma(G,w) has received considerable attention during the last years, and has been proved to be notoriously hard: for instance, it is NP-hard on split graphs, unsolvable on n-vertex trees in time n^{o(log n)} unless the ETH fails, and W[1]-hard on forests parameterized by the size of a largest tree. We focus on the so-called dual parameterization of the problem: given a vertex-weighted graph (G,w) and an integer k, is sigma(G,w) <= sum_{v in V(G)} w(v) - k? This parameterization has been recently considered by Escoffier [WG, 2016], who provided an FPT algorithm running in time 2^{O(k log k)} * n^{O(1)}, and asked which kernel size can be achieved for the problem. We provide an FPT algorithm running in time 9^k * n^{O(1)}, and prove that no algorithm in time 2^{o(k)} * n^{O(1)} exists under the ETH. On the other hand, we present a kernel with at most (2^{k-1}+1) (k-1) vertices, and rule out the existence of polynomial kernels unless NP subseteq coNP/poly, even on split graphs with only two different weights. Finally, we identify some classes of graphs on which the problem admits a polynomial kernel, in particular interval graphs and subclasses of split graphs, and in the latter case we present lower bounds on the degrees of the polynomials.

Cite as

Júlio Araújo, Victor A. Campos, Carlos Vinícius G. C. Lima, Vinícius Fernandes dos Santos, Ignasi Sau, and Ana Silva. Dual Parameterization of Weighted Coloring. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 12:1-12:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{araujo_et_al:LIPIcs.IPEC.2018.12,
  author =	{Ara\'{u}jo, J\'{u}lio and Campos, Victor A. and Lima, Carlos Vin{\'\i}cius G. C. and Fernandes dos Santos, Vin{\'\i}cius and Sau, Ignasi and Silva, Ana},
  title =	{{Dual Parameterization of Weighted Coloring}},
  booktitle =	{13th International Symposium on Parameterized and Exact Computation (IPEC 2018)},
  pages =	{12:1--12:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-084-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{115},
  editor =	{Paul, Christophe and Pilipczuk, Michal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2018.12},
  URN =		{urn:nbn:de:0030-drops-102134},
  doi =		{10.4230/LIPIcs.IPEC.2018.12},
  annote =	{Keywords: weighted coloring, max coloring, parameterized complexity, dual parameterization, FPT algorithms, polynomial kernels, split graphs, interval graphs}
}
Document
From Evaluating to Forecasting Performance: How to Turn Information Retrieval, Natural Language Processing and Recommender Systems into Predictive Sciences (Dagstuhl Perspectives Workshop 17442)

Authors: Nicola Ferro, Norbert Fuhr, Gregory Grefenstette, Joseph A. Konstan, Pablo Castells, Elizabeth M. Daly, Thierry Declerck, Michael D. Ekstrand, Werner Geyer, Julio Gonzalo, Tsvi Kuflik, Krister Lindén, Bernardo Magnini, Jian-Yun Nie, Raffaele Perego, Bracha Shapira, Ian Soboroff, Nava Tintarev, Karin Verspoor, Martijn C. Willemsen, and Justin Zobel

Published in: Dagstuhl Manifestos, Volume 7, Issue 1 (2018)


Abstract
We describe the state-of-the-art in performance modeling and prediction for Information Retrieval (IR), Natural Language Processing (NLP) and Recommender Systems (RecSys) along with its shortcomings and strengths. We present a framework for further research, identifying five major problem areas: understanding measures, performance analysis, making underlying assumptions explicit, identifying application features determining performance, and the development of prediction models describing the relationship between assumptions, features and resulting performance.

Cite as

Nicola Ferro, Norbert Fuhr, Gregory Grefenstette, Joseph A. Konstan, Pablo Castells, Elizabeth M. Daly, Thierry Declerck, Michael D. Ekstrand, Werner Geyer, Julio Gonzalo, Tsvi Kuflik, Krister Lindén, Bernardo Magnini, Jian-Yun Nie, Raffaele Perego, Bracha Shapira, Ian Soboroff, Nava Tintarev, Karin Verspoor, Martijn C. Willemsen, and Justin Zobel. From Evaluating to Forecasting Performance: How to Turn Information Retrieval, Natural Language Processing and Recommender Systems into Predictive Sciences (Dagstuhl Perspectives Workshop 17442). In Dagstuhl Manifestos, Volume 7, Issue 1, pp. 96-139, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Article{ferro_et_al:DagMan.7.1.96,
  author =	{Ferro, Nicola and Fuhr, Norbert and Grefenstette, Gregory and Konstan, Joseph A. and Castells, Pablo and Daly, Elizabeth M. and Declerck, Thierry and Ekstrand, Michael D. and Geyer, Werner and Gonzalo, Julio and Kuflik, Tsvi and Lind\'{e}n, Krister and Magnini, Bernardo and Nie, Jian-Yun and Perego, Raffaele and Shapira, Bracha and Soboroff, Ian and Tintarev, Nava and Verspoor, Karin and Willemsen, Martijn C. and Zobel, Justin},
  title =	{{From Evaluating to Forecasting Performance: How to Turn Information Retrieval, Natural Language Processing and Recommender Systems into Predictive Sciences (Dagstuhl Perspectives Workshop 17442)}},
  pages =	{96--139},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2018},
  volume =	{7},
  number =	{1},
  editor =	{Ferro, Nicola and Fuhr, Norbert and Grefenstette, Gregory and Konstan, Joseph A. and Castells, Pablo and Daly, Elizabeth M. and Declerck, Thierry and Ekstrand, Michael D. and Geyer, Werner and Gonzalo, Julio and Kuflik, Tsvi and Lind\'{e}n, Krister and Magnini, Bernardo and Nie, Jian-Yun and Perego, Raffaele and Shapira, Bracha and Soboroff, Ian and Tintarev, Nava and Verspoor, Karin and Willemsen, Martijn C. and Zobel, Justin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.7.1.96},
  URN =		{urn:nbn:de:0030-drops-98987},
  doi =		{10.4230/DagMan.7.1.96},
  annote =	{Keywords: Information Systems, Formal models, Evaluation, Simulation, User Interaction}
}
Document
CB-POCL: A Choice-Based Algorithm for Character Personality in Planning-based Narrative Generation

Authors: Julio César Bahamón and R. Michael Young

Published in: OASIcs, Volume 32, 2013 Workshop on Computational Models of Narrative


Abstract
The quality and believability of a story can be significantly enhanced by the presence of compelling characters. Characters can be made more compelling by the portrayal of a distinguishable personality. This paper presents an algorithm that formalizes an approach previously described for the incorporation of character personality in narrative that is automatically generated. The approach is based on a computational model that operationalizes personality as behavior that results from the choices made by characters in the course of a story. This operationalization is based on the Big Five personality structure and results from behavioral psychology studies that link behavior to personality traits.

Cite as

Julio César Bahamón and R. Michael Young. CB-POCL: A Choice-Based Algorithm for Character Personality in Planning-based Narrative Generation. In 2013 Workshop on Computational Models of Narrative. Open Access Series in Informatics (OASIcs), Volume 32, pp. 4-23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{bahamon_et_al:OASIcs.CMN.2013.4,
  author =	{Baham\'{o}n, Julio C\'{e}sar and Young, R. Michael},
  title =	{{CB-POCL: A Choice-Based Algorithm for Character Personality in Planning-based Narrative Generation}},
  booktitle =	{2013 Workshop on Computational Models of Narrative},
  pages =	{4--23},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-57-6},
  ISSN =	{2190-6807},
  year =	{2013},
  volume =	{32},
  editor =	{Finlayson, Mark A. and Fisseni, Bernhard and L\"{o}we, Benedikt and Meister, Jan Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.CMN.2013.4},
  URN =		{urn:nbn:de:0030-drops-41601},
  doi =		{10.4230/OASIcs.CMN.2013.4},
  annote =	{Keywords: Artificial Intelligence, Planning, Narrative Generation}
}
  • Refine by Author
  • 1 Araújo, Júlio
  • 1 Bahamón, Julio César
  • 1 Campos, Victor A.
  • 1 Castells, Pablo
  • 1 Daly, Elizabeth M.
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Computing methodologies → Ontology engineering
  • 1 Information systems → Markup languages
  • 1 Information systems → Semantic web description languages
  • 1 Mathematics of computing → Graph algorithms
  • Show More...

  • Refine by Keyword
  • 1 Artificial Intelligence
  • 1 Evaluation
  • 1 FPT algorithms
  • 1 Formal models
  • 1 Information Systems
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2013
  • 1 2018
  • 1 2019
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail