This paper points at a connection between certain (classical) fine-grained reductions and the question: Do quantum algorithms offer an advantage for problems whose (classical) best solution is via dynamic programming? A remarkable recent result of Ambainis et al. [SODA 2019] indicates that the answer is positive for some fundamental problems such as Set-Cover and Travelling Salesman. They design a quantum O^*(1.728^n) time algorithm whereas the dynamic programming O^*(2^n) time algorithms are conjectured to be classically optimal. In this paper, fine-grained reductions are extracted from their algorithms giving the first lower bounds for problems in P that are based on the intriguing Set-Cover Conjecture (SeCoCo) of Cygan et al. [CCC 2010]. In particular, the SeCoCo implies: - a super-linear Omega(n^{1.08}) lower bound for 3-SUM on n integers, - an Omega(n^{k/(c_k)-epsilon}) lower bound for k-SUM on n integers and k-Clique on n-node graphs, for any integer k >= 3, where c_k <= log_2{k}+1.4427. While far from being tight, these lower bounds are significantly stronger than what is known to follow from the Strong Exponential Time Hypothesis (SETH); the well-known n^{Omega(k)} ETH-based lower bounds for k-Clique and k-SUM are vacuous when k is constant. Going in the opposite direction, this paper observes that some "sequential" problems with previously known fine-grained reductions to a "parallelizable" core also enjoy quantum speedups over their classical dynamic programming solutions. Examples include RNA Folding and Least-Weight Subsequence.
@InProceedings{abboud:LIPIcs.ICALP.2019.8, author = {Abboud, Amir}, title = {{Fine-Grained Reductions and Quantum Speedups for Dynamic Programming}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {8:1--8:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.8}, URN = {urn:nbn:de:0030-drops-105846}, doi = {10.4230/LIPIcs.ICALP.2019.8}, annote = {Keywords: Fine-Grained Complexity, Set-Cover, 3-SUM, k-Clique, k-SUM, Dynamic Programming, Quantum Algorithms} }
Feedback for Dagstuhl Publishing