A graph G is contractible to a graph H if there is a set X subseteq E(G), such that G/X is isomorphic to H. Here, G/X is the graph obtained from G by contracting all the edges in X. For a family of graphs F, the F-Contraction problem takes as input a graph G on n vertices, and the objective is to output the largest integer t, such that G is contractible to a graph H in F, where |V(H)|=t. When F is the family of paths, then the corresponding F-Contraction problem is called Path Contraction. The problem Path Contraction admits a simple algorithm running in time 2^n * n^{O(1)}. In spite of the deceptive simplicity of the problem, beating the 2^n * n^{O(1)} bound for Path Contraction seems quite challenging. In this paper, we design an exact exponential time algorithm for Path Contraction that runs in time 1.99987^n * n^{O(1)}. We also define a problem called 3-Disjoint Connected Subgraphs, and design an algorithm for it that runs in time 1.88^n * n^{O(1)}. The above algorithm is used as a sub-routine in our algorithm for Path Contraction.
@InProceedings{agrawal_et_al:LIPIcs.ICALP.2019.11, author = {Agrawal, Akanksha and Fomin, Fedor V. and Lokshtanov, Daniel and Saurabh, Saket and Tale, Prafullkumar}, title = {{Path Contraction Faster Than 2^n}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {11:1--11:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.11}, URN = {urn:nbn:de:0030-drops-105874}, doi = {10.4230/LIPIcs.ICALP.2019.11}, annote = {Keywords: path contraction, exact exponential time algorithms, graph algorithms, enumerating connected sets, 3-disjoint connected subgraphs} }
Feedback for Dagstuhl Publishing