License
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2019.11
URN: urn:nbn:de:0030-drops-105874
URL: http://drops.dagstuhl.de/opus/volltexte/2019/10587/
Go to the corresponding LIPIcs Volume Portal


Agrawal, Akanksha ; Fomin, Fedor V. ; Lokshtanov, Daniel ; Saurabh, Saket ; Tale, Prafullkumar

Path Contraction Faster Than 2^n

pdf-format:
LIPIcs-ICALP-2019-11.pdf (6 MB)


Abstract

A graph G is contractible to a graph H if there is a set X subseteq E(G), such that G/X is isomorphic to H. Here, G/X is the graph obtained from G by contracting all the edges in X. For a family of graphs F, the F-Contraction problem takes as input a graph G on n vertices, and the objective is to output the largest integer t, such that G is contractible to a graph H in F, where |V(H)|=t. When F is the family of paths, then the corresponding F-Contraction problem is called Path Contraction. The problem Path Contraction admits a simple algorithm running in time 2^n * n^{O(1)}. In spite of the deceptive simplicity of the problem, beating the 2^n * n^{O(1)} bound for Path Contraction seems quite challenging. In this paper, we design an exact exponential time algorithm for Path Contraction that runs in time 1.99987^n * n^{O(1)}. We also define a problem called 3-Disjoint Connected Subgraphs, and design an algorithm for it that runs in time 1.88^n * n^{O(1)}. The above algorithm is used as a sub-routine in our algorithm for Path Contraction.

BibTeX - Entry

@InProceedings{agrawal_et_al:LIPIcs:2019:10587,
  author =	{Akanksha Agrawal and Fedor V. Fomin and Daniel Lokshtanov and Saket Saurabh and Prafullkumar Tale},
  title =	{{Path Contraction Faster Than 2^n}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{11:1--11:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Christel Baier and Ioannis Chatzigiannakis and Paola Flocchini and Stefano Leonardi},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2019/10587},
  URN =		{urn:nbn:de:0030-drops-105874},
  doi =		{10.4230/LIPIcs.ICALP.2019.11},
  annote =	{Keywords: path contraction, exact exponential time algorithms, graph algorithms, enumerating connected sets, 3-disjoint connected subgraphs}
}

Keywords: path contraction, exact exponential time algorithms, graph algorithms, enumerating connected sets, 3-disjoint connected subgraphs
Seminar: 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)
Issue Date: 2019
Date of publication: 08.07.2019


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI