Tight FPT Approximations for k-Median and k-Means

Authors Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, Jason Li



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2019.42.pdf
  • Filesize: 0.54 MB
  • 14 pages

Document Identifiers

Author Details

Vincent Cohen-Addad
  • CNRS & Sorbonne Université, Paris, France
Anupam Gupta
  • Carnegie Mellon University, Pittsburgh, PA, USA
Amit Kumar
  • IIT Delhi, India
Euiwoong Lee
  • New York University, NY, USA
Jason Li
  • Carnegie Mellon University, Pittsburgh, PA, USA

Acknowledgements

We thank Deeparnab Chakrabarty, Ola Svensson, and Pasin Manurangsi for useful discussions. This research was partially conducted when A. Kumar was visiting A. Gupta and Carnegie Mellon University as part of the Joint Indo-US Virtual Center for Algorithms under Uncertainty.

Cite AsGet BibTex

Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight FPT Approximations for k-Median and k-Means. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 42:1-42:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.ICALP.2019.42

Abstract

We investigate the fine-grained complexity of approximating the classical k-Median/k-Means clustering problems in general metric spaces. We show how to improve the approximation factors to (1+2/e+epsilon) and (1+8/e+epsilon) respectively, using algorithms that run in fixed-parameter time. Moreover, we show that we cannot do better in FPT time, modulo recent complexity-theoretic conjectures.

Subject Classification

ACM Subject Classification
  • Theory of computation → Facility location and clustering
  • Theory of computation → Fixed parameter tractability
  • Theory of computation → Submodular optimization and polymatroids
Keywords
  • approximation algorithms
  • fixed-parameter tractability
  • k-median
  • k-means
  • clustering
  • core-sets

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better Guarantees for k-Means and Euclidean k-Median by Primal-Dual Algorithms. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 61-72, 2017. Google Scholar
  2. Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The Hardness of Approximation of Euclidean k-Means. In 31st International Symposium on Computational Geometry, SoCG 2015, June 22-25, 2015, Eindhoven, The Netherlands, pages 754-767, 2015. Google Scholar
  3. Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An improved approximation for k-median, and positive correlation in budgeted optimization. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, pages 737-756. SIAM, 2014. Google Scholar
  4. Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740-1766, 2011. URL: http://dx.doi.org/10.1137/080733991.
  5. Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi, Danupon Nanongkai, and Luca Trevisan. From gap-ETH to FPT-inapproximability: Clique, dominating set, and more. In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual Symposium on, pages 743-754. IEEE, 2017. Google Scholar
  6. Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A Constant-Factor Approximation Algorithm for the k-Median Problem. J. Comput. Syst. Sci., 65(1):129-149, 2002. URL: http://dx.doi.org/10.1006/jcss.2002.1882.
  7. Ke Chen. On k-Median clustering in high dimensions. In SODA, 2006. Google Scholar
  8. Ke Chen. On coresets for k-median and k-means clustering in metric and Euclidean spaces and their applications. SIAM Journal on Computing, 39(3):923-947, 2009. Google Scholar
  9. Yijia Chen and Bingkai Lin. The constant inapproximability of the parameterized dominating set problem. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 505-514. IEEE, 2016. Google Scholar
  10. Karthik C.S., Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized complexity of approximating dominating set. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 1283-1296. ACM, 2018. Google Scholar
  11. Artur Czumaj and Christian Sohler. Small Space Representations for Metric Min-sum k-Clustering and Their Applications. Theory Comput. Syst., 46(3):416-442, 2010. URL: http://dx.doi.org/10.1007/s00224-009-9235-1.
  12. Irit Dinur. Mildly exponential reduction from gap 3SAT to polynomial-gap label cover. Electronic Colloquium on Computational Complexity (ECCC), pages TR 16-128, 2016. Google Scholar
  13. Uriel Feige. A Threshold of Ln N for Approximating Set Cover. J. ACM, 45(4), July 1998. Google Scholar
  14. Dan Feldman and Michael Langberg. A Unified Framework for Approximating and Clustering Data. CoRR, abs/1106.1379, 2011. (An extended abstract appeared at STOC 11). URL: http://arxiv.org/abs/1106.1379.
  15. Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering. In Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages 1434-1453. Society for Industrial and Applied Mathematics, 2013. Google Scholar
  16. Sudipto Guha and Samir Khuller. Greedy strikes back: improved facility location algorithms. J. Algorithms, 31(1):228-248, 1999. URL: http://dx.doi.org/10.1006/jagm.1998.0993.
  17. Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and Angela Y. Wu. A local search approximation algorithm for k-means clustering. Comput. Geom., 28(2-3):89-112, 2004. URL: http://dx.doi.org/10.1016/j.comgeo.2004.03.003.
  18. Ravishankar Krishnaswamy, Amit Kumar, Viswanath Nagarajan, Yogish Sabharwal, and Barna Saha. Facility Location with Matroid or Knapsack Constraints. Math. Oper. Res., 40(2):446-459, 2015. URL: http://dx.doi.org/10.1287/moor.2014.0678.
  19. Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for clustering problems in any dimensions. J. ACM, 57(2):5:1-5:32, 2010. URL: http://dx.doi.org/10.1145/1667053.1667054.
  20. Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability for k-means. Inf. Process. Lett., 120:40-43, 2017. URL: http://dx.doi.org/10.1016/j.ipl.2016.11.009.
  21. Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. Information and Computation, 222:45-58, 2013. Google Scholar
  22. Shi Li and Ola Svensson. Approximating k-Median via Pseudo-Approximation. SIAM J. Comput., 45(2):530-547, 2016. URL: http://dx.doi.org/10.1137/130938645.
  23. Bingkai Lin. The parameterized complexity of k-biclique. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, pages 605-615. SIAM, 2015. Google Scholar
  24. Pasin Manurangsi and Prasad Raghavendra. A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics (LIPIcs), pages 78:1-78:15, 2017. Google Scholar
  25. Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763-803, 1998. Google Scholar
  26. Chaitanya Swamy. Improved Approximation Algorithms for Matroid and Knapsack Median Problems and Applications. ACM Trans. Algorithms, 12(4):49:1-49:22, 2016. URL: http://dx.doi.org/10.1145/2963170.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail