Büchi Objectives in Countable MDPs (Track B: Automata, Logic, Semantics, and Theory of Programming)

Authors Stefan Kiefer, Richard Mayr, Mahsa Shirmohammadi, Patrick Totzke



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2019.119.pdf
  • Filesize: 0.53 MB
  • 14 pages

Document Identifiers

Author Details

Stefan Kiefer
  • University of Oxford, UK
Richard Mayr
  • University of Edinburgh, UK
Mahsa Shirmohammadi
  • CNRS, Paris, France
  • IRIF, Paris, France
Patrick Totzke
  • University of Liverpool, UK

Acknowledgements

The authors thank anonymous reviewers for their helpful comments.

Cite AsGet BibTex

Stefan Kiefer, Richard Mayr, Mahsa Shirmohammadi, and Patrick Totzke. Büchi Objectives in Countable MDPs (Track B: Automata, Logic, Semantics, and Theory of Programming). In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 119:1-119:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.ICALP.2019.119

Abstract

We study countably infinite Markov decision processes with Büchi objectives, which ask to visit a given subset F of states infinitely often. A question left open by T.P. Hill in 1979 [Theodore Preston Hill, 1979] is whether there always exist epsilon-optimal Markov strategies, i.e., strategies that base decisions only on the current state and the number of steps taken so far. We provide a negative answer to this question by constructing a non-trivial counterexample. On the other hand, we show that Markov strategies with only 1 bit of extra memory are sufficient.

Subject Classification

ACM Subject Classification
  • Theory of computation → Random walks and Markov chains
  • Mathematics of computing → Probability and statistics
Keywords
  • Markov decision processes

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pieter Abbeel and Andrew Y. Ng. Learning first-order Markov models for control. In Advances in Neural Information Processing Systems 17, pages 1-8. MIT Press, 2004. Google Scholar
  2. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008. Google Scholar
  3. P. Billingsley. Probability and Measure. Wiley, 1995. Third Edition. Google Scholar
  4. Vincent D. Blondel and John N. Tsitsiklis. A survey of computational complexity results in systems and control. Automatica, 36(9):1249-1274, 2000. Google Scholar
  5. Nicole Bäuerle and Ulrich Rieder. Markov Decision Processes with Applications to Finance. Springer-Verlag Berlin Heidelberg, 2011. Google Scholar
  6. K. Chatterjee, L. de Alfaro, and T. Henzinger. Trading memory for randomness. In Annual Conference on Quantitative Evaluation of Systems, pages 206-217. IEEE Computer Society Press, 2004. Google Scholar
  7. K. Chatterjee and T. Henzinger. A survey of stochastic ω-regular games. Journal of Computer and System Sciences, 78(2):394-413, 2012. Google Scholar
  8. K. Chatterjee, M. Jurdziński, and T. Henzinger. Quantitative Stochastic Parity Games. In Annual ACM-SIAM Symposium on Discrete Algorithms, pages 121-130. Society for Industrial and Applied Mathematics, 2004. Google Scholar
  9. Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors. Handbook of Model Checking. Springer, 2018. Google Scholar
  10. Theodore Preston Hill. On the Existence of Good Markov strategies. Transactions of the American Mathematical Society, 247:157-176, 1979. Google Scholar
  11. Theodore Preston Hill. Goal Problems in Gambling Theory. Revista de Matemática: Teoría y Aplicaciones, 6(2):125-132, 1999. Google Scholar
  12. Stefan Kiefer, Richard Mayr, Mahsa Shirmohammadi, and Patrick Totzke. Büchi Objectives in Countable MDPs. Technical report, arxiv.org, 2019. URL: http://arxiv.org/abs/1904.11573.
  13. Stefan Kiefer, Richard Mayr, Mahsa Shirmohammadi, and Dominik Wojtczak. Parity Objectives in Countable MDPs. In Annual IEEE Symposium on Logic in Computer Science, 2017. Google Scholar
  14. J. Krčál. Determinacy and Optimal Strategies in Stochastic Games. Master’s thesis, Masaryk University, School of Informatics, 2009. Google Scholar
  15. D. Ornstein. On the existence of stationary optimal strategies. Proceedings of the American Mathematical Society, 20:563-569, 1969. Google Scholar
  16. Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley &Sons, Inc., 1st edition, 1994. Google Scholar
  17. Manfred Schäl. Markov decision processes in finance and dynamic options. In Handbook of Markov Decision Processes, pages 461-487. Springer, 2002. Google Scholar
  18. Olivier Sigaud and Olivier Buffet. Markov Decision Processes in Artificial Intelligence. John Wiley &Sons, 2013. Google Scholar
  19. R.S. Sutton and A.G Barto. Reinforcement Learning: An Introduction. Adaptive Computation and Machine Learning. MIT Press, 2018. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail