LIPIcs.APPROX-RANDOM.2019.31.pdf
- Filesize: 0.5 MB
- 17 pages
Approximation algorithms for constraint satisfaction problems (CSPs) are a central direction of study in theoretical computer science. In this work, we study classical product state approximation algorithms for a physically motivated quantum generalization of Max-Cut, known as the quantum Heisenberg model. This model is notoriously difficult to solve exactly, even on bipartite graphs, in stark contrast to the classical setting of Max-Cut. Here we show, for any interaction graph, how to classically and efficiently obtain approximation ratios 0.649 (anti-feromagnetic XY model) and 0.498 (anti-ferromagnetic Heisenberg XYZ model). These are almost optimal; we show that the best possible ratios achievable by a product state for these models is 2/3 and 1/2, respectively.
Feedback for Dagstuhl Publishing