LIPIcs.SWAT.2016.1.pdf
- Filesize: 0.51 MB
- 14 pages
We consider a lower- and upper-bounded generalization of the classical facility location problem, where each facility has a capacity (upper bound) that limits the number of clients it can serve and a lower bound on the number of clients it must serve if it is opened. We develop an LP rounding framework that exploits a Voronoi diagram-based clustering approach to derive the first bicriteria constant approximation algorithm for this problem with non-uniform lower bounds and uniform upper bounds. This naturally leads to the the first LP-based approximation algorithm for the lower bounded facility location problem (with non-uniform lower bounds). We also demonstrate the versatility of our framework by extending this and presenting the first constant approximation algorithm for some connected variant of the problems in which the facilities are required to be connected as well.
Feedback for Dagstuhl Publishing