DagSemProc.04351.9.pdf
- Filesize: 202 kB
- 7 pages
A major problem in the constructive theory of apartness spaces is that of finding a good notion of compactness. Such a notion should (i) reduce to ``complete plus totally bounded'' for uniform spaces and (ii) classically be equivalent to the usual Heine-Borel-Lebesgue property for the apartness topology. The constructive counterpart of the smallest uniform structure compatible with a given apartness, while not constructively a uniform structure, offers a possible solution to the compactness-definition problem. That counterpart turns out to be interesting in its own right, and reveals some additional properties of an apartness that may have uses elsewhere in the theory.
Feedback for Dagstuhl Publishing